Value-Peaks of Permutations

Pierre Bouchard

Département de mathématiques Université du Québec à Montréal Case postale 8888, Succursale Centre-ville Montréal (Québec), Canada H3C 3P8 bouchard.pierre@uqam.ca

Jun Ma[†]

Institute of Mathematics Academia Sinica Taipei, Taiwan

Hungyung Chang*

Department of Applied Mathematics National Sun Yat-sen University Kaohsiung, Taiwan 80424

changhy@math.nsysu.edu.tw

Jean Yeh

Department of Mathematics National Taiwan University Taipei, Taiwan

jean.yh@ms45.url.com.tw

majun904@sjtu.edu.cn

Yeong-Nan Yeh[‡]

Institute of Mathematics Academia Sinica Taipei, Taiwan

mayeh@math.sinica.edu.tw

Submitted: Nov 29, 2009; Accepted: Mar 16, 2010; Published: Mar 29, 2010 Mathematics Subject Classification: 05A15

Abstract

In this paper, we focus on a "local property" of permutations: value-peak. A permutation σ has a value-peak $\sigma(i)$ if $\sigma(i-1) < \sigma(i) > \sigma(i+1)$ for some $i \in [2, n-1]$. Define $VP(\sigma)$ as the set of value-peaks of the permutation σ . For any $S \subseteq [3, n]$, define $VP_n(S)$ such that $VP(\sigma) = S$. Let $\mathcal{P}_n = \{S \mid VP_n(S) \neq \emptyset\}$. we make the set \mathcal{P}_n into a poset \mathcal{P}_n by defining $S \preceq T$ if $S \subseteq T$ as sets. We prove that the poset \mathcal{P}_n is a simplicial complex on the set [3, n] and study some of its properties. We give enumerative formulae of permutations in the set $VP_n(S)$.

[†]Corresponding author

^{*}Partially supported by NSC 98-2115-M-110-009

[‡]Partially supported by NSC 96-2115-M-001-005

1 Introduction

Let $[m, n] := \{m, m + 1, \dots, n\}$. If m > n, then $[m, n] = \emptyset$. Let [n] := [1, n] and \mathfrak{S}_n be the set of all the permutations on the set [n]. We write permutations of \mathfrak{S}_n in the form $\sigma = (\sigma(1)\sigma(2)\cdots\sigma(n))$. Fix a permutation σ in \mathfrak{S}_n . For every $i \in [n-1]$, if $\sigma(i) > \sigma(i+1)$, then we say that i is a position-descent of σ . Define the position-descent set of a permutation σ , denoted by $PD(\sigma)$, as $PD(\sigma) = \{i \in [n-1] \mid \sigma(i) > \sigma(i+1)\}$. Given a set $S \subseteq [n-1]$, suppose $PD(\sigma) = S$ for some $\sigma \in \mathfrak{S}_n$. We easily obtain the increasing and decreasing intervals of σ from the set S. The permutation σ is a function from the set [n] to itself. Since the monotonic property of a function is a global property of the function, the position-descent set of a permutation gives a "global property" of the permutation. We say a permutation $\sigma \in \mathfrak{S}_n$ has a value-descent $\sigma(i)$ if $\sigma(i) > \sigma(i+1)$ for some $i \in [n-1]$. Define the value-descent set of a permutation σ , denoted by $VD(\sigma)$, as $VD(\sigma) = \{\sigma(i) \mid \sigma(i) > \sigma(i+1)\}$. The value-descent set of a permutation is different from its position-descent set. Let $S \subseteq [2, n]$. Suppose $VD(\sigma) = S$ for some $\sigma \in \mathfrak{S}_n$. We only have that k is larger than its immediate right neighbour in the permutation σ for any $k \in S$ and do not obtain the increasing and decreasing intervals of σ from the set S. So the value-descent set of a permutation gives a "local property" of the permutation. For any $S \subseteq [2, n]$, define a set $VD_n(S)$ as $VD_n(S) = \{\sigma \in \mathfrak{S}_n \mid VD(\sigma) = S\}$ and use $vd_n(S)$ to denote the number of permutations in the set $VD_n(S)$, i.e., $vd_n(S) = |VD_n(S)|$. In a joint work [1], Chang, Ma and Yeh derive an explicit formula for $vd_n(S)$.

In this paper, we are interested in another "local property" of permutations: valuepeak. A permutation σ has a value-peak $\sigma(i)$ if $\sigma(i-1) < \sigma(i) > \sigma(i+1)$ for some $i \in [2, n-1]$. Define $VP(\sigma)$ as the set of value-peaks of σ , i.e., $VP(\sigma) = \{\sigma(i) \mid \sigma(i-1) < \sigma(i) > \sigma(i+1)\}$. For example, the value-peak set of $\sigma = (48362517)$ is $\{5, 6, 8\}$. Since σ has no value-peaks when $n \leq 2$, we may always suppose that $n \geq 3$. For any $S \subseteq [n]$, define a set $VP_n(S)$ as $VP_n(S) = \{\sigma \in \mathfrak{S}_n \mid VP(\sigma) = S\}$. Obviously, if $\{1, 2, \} \cap S \neq \emptyset$ then $VP_n(S) = \emptyset$.

Example 1.1

$$VP_5(\{4,5\}) = \{ 14253, 14352, 24153, 34152, 24351, 34251, \\ 15243, 15342, 25143, 35142, 25341, 35241 \}.$$

Suppose $S = \{i_1, i_2, \dots, i_k\}$, where $i_1 < i_2 < \dots < i_k$. We prove the necessary and sufficient conditions for $VP_n(S) \neq \emptyset$ are $i_j \ge 2j + 1$ for all $j \in [k]$. Let $\mathcal{P}_n = \{S \mid VP_n(S) \neq \emptyset\}$. We make the set \mathcal{P}_n into a poset \mathscr{P}_n by defining $S \preceq T$ if $S \subseteq T$ as sets. Fig. 1 shows the Hasse diagrams of \mathscr{P}_3 , \mathscr{P}_4 and \mathscr{P}_5

Fig.1. the Hasse diagrams of \mathscr{P}_3 , \mathscr{P}_4 and \mathscr{P}_5 .

In the next section we prove that \mathscr{P}_n is a simplicial complex on the vertex set [3, n] and derive some properties of \mathscr{P}_n .

Then we turn to enumerative problems for permutations by value-peak set. Let $vp_n(S)$ denote the number of permutations in the set $VP_n(S)$, i.e., $vp_n(S) = |VP_n(S)|$. For the cases with |S| = 0, 1, 2, we derive explicit formulae for $vp_n(S)$. For general $n \ge 3$, we derive the following recurrence relation. Let $n \ge 3$ and $S \subseteq [3, n]$. Suppose $VP_n(S) \ne \emptyset$ and let $r = \max S$ if $S \ne \emptyset$, 1 otherwise. For any $0 \le k \le n - r - 1$, we have

$$vp_n(S \cup [n-k+1,n]) = 2(k+1)vp_{n-1}(S \cup [n-k,n-1]) + k(k+1)vp_{n-2}(S \cup [n-k,n-2]).$$

For any $S \subseteq [3, n]$, we write the set S in the form $S = \bigcup_{i=1}^{m} [r_i - k_i + 1, r_i]$ such that $r_i \leq r_{i+1} - k_{i+1} - 1$ for all $i \in [m-1]$. For example, let n = 12 and $S = \{3, 4, 8, 10, 11, 12\}$. Then $S = [3, 4] \cup [8, 8] \cup [10, 12]$. We have $r_1 = 4$, $k_1 = 2$, $r_2 = 8$, $k_2 = 1$, $r_3 = 12$, $k_3 = 3$. Define the *type* of the set S, denoted *type*(S), as $(r_1^{k_1}, r_2^{k_2}, \ldots, r_m^{k_m})$. We conclude with a formula for the number of permutations in terms of the type of S.

The paper is organised as follows. In Section 2, we give the necessary and sufficient conditions for $VP_n(S) \neq \emptyset$. We prove the poset \mathscr{P}_n is a simplicial complex on the set [3, n] and study its some properties. In Section 3, we investigate enumerative problems of permutations in the sets $VP_n(S)$. In the Appendix, we list $vp_n(S)$ for $1 \leq n \leq 8$ obtained by computer searches.

2 The Simplicial Complex \mathscr{P}_n

In this section, we give the necessary and sufficient conditions for $VP_n(S) \neq \emptyset$ for any $n \ge 3$ and $S \subseteq [n]$. We show \mathscr{P}_n is a simplicial complex on the set [3, n] and study some properties of \mathscr{P}_n .

Theorem 2.1 Let $n \ge 3$. Suppose $S = \{i_1, i_2, \dots, i_k\}$ is a subset of [n], where $i_1 < i_2 < \dots < i_k$. Then the necessary and sufficient conditions for $VP_n(S) \neq \emptyset$ are $i_j \ge 2j + 1$ for all $j \in [k]$.

Proof. Suppose $VP_n(S) \neq \emptyset$ and let $\sigma \in VP_n(S)$. For any $j \in [k]$, all the integers i_1, i_2, \dots, i_j are a value-peak of σ . Then $i_j - j \ge j + 1$, hence, $i_j \ge 2j + 1$.

Conversely, suppose $i_j \ge 2j + 1$ for all $j \in [k]$. Suppose $[n] \setminus S = \{a_1, a_2, \cdots, a_{n-k}\}$ with $a_1 < a_2 < \cdots < a_{n-k}$. Let σ be the permutation in \mathfrak{S}_n defined by

$$\begin{cases} \sigma(2j) = i_j & \text{for } 1 \leq j \leq k, \\ \sigma(2j-1) = a_j & \text{for } 1 \leq j \leq k+1, \\ \sigma(j) = a_j & \text{for } 2k+2 \leq j \leq n. \end{cases}$$

Obviously, $VP(\sigma) = S$ and $VP_n(S) \neq \emptyset$.

Corollary 2.1 Let $n \ge 3$ and $S \subseteq [n]$. Suppose $VP_n(S) \ne \emptyset$. We have $|S| \le \lfloor \frac{n-1}{2} \rfloor$.

Proof. Suppose $S = \{i_1, i_2, \dots, i_k\}$ with $i_1 < i_2 < \dots < i_k$. Since $VP_n(S) \neq \emptyset$, Theorem 2.1 tells us that $n \ge i_k \ge 2k + 1$. Hence $k \le \lfloor \frac{n-1}{2} \rfloor$.

Corollary 2.2 Let $n \ge 3$ and $S \subseteq [n]$. Suppose $VP_n(S) \ne \emptyset$. Then for $|S| < \lfloor \frac{n-1}{2} \rfloor$, we have $VP_{n+1}(S \cup \{n+1\}) \ne \emptyset$; for $|S| = \lfloor \frac{n-1}{2} \rfloor$, we have $VP_{n+1}(S \cup \{n+1\}) \ne \emptyset$ if n is even; otherwise, $VP_{n+1}(S \cup \{n+1\}) = \emptyset$.

Proof. Let k = |S|. $k < \lfloor \frac{n-1}{2} \rfloor$ implies $2(k+1) + 1 \leq 2\lfloor \frac{n-1}{2} \rfloor + 1 < n+1$. So, $VP_{n+1}(S \cup \{n+1\}) \neq \emptyset$ when $|S| < \lfloor \frac{n-1}{2} \rfloor$. For the case with $k = \lfloor \frac{n-1}{2} \rfloor$, we have

$$2(k+1) + 1 = \begin{cases} n+1 & \text{if } n \text{ is even,} \\ n+2 & \text{if } n \text{ is odd.} \end{cases}$$

By Theorem 2.1, $VP_{n+1}(S \cup \{n+1\}) \neq \emptyset$ if n is even; otherwise, $VP_{n+1}(S \cup \{n+1\}) = \emptyset$.

Following [3], define a simplicial complex Δ on a vertex set V as a collection of subsets of V satisfying:

(1) If $x \in V$, then $\{x\} \in \Delta$, and (2) if $S \in \Delta$ and $T \subseteq S$, then $T \in \Delta$.

Theorem 2.2 Let $n \ge 3$. Then \mathscr{P}_n is a simplicial complex on the set [3, n].

Proof. Obviously, $\emptyset \in \mathscr{P}_n$. For any $3 \leq x \leq n$, Theorem 2.1 implies $\{x\} \in \mathscr{P}_n$. Let T be a subset of [n] such that $VP_n(T) = \emptyset$. Note that $VP_n(S) = \emptyset$ for any $T \subseteq S$. Thus given an $S \in \mathscr{P}_n$, we have $T \in \mathscr{P}_n$ for all $T \subseteq S$. Hence, \mathscr{P}_n is a simplicial complex on the set [3, n].

If P and Q are posets, then the *direct product* of P and Q is the poset $P \times Q$ on the set $\{(x, y) \mid x \in P \text{ and } y \in Q\}$ such that $(x, y) \leq (x', y')$ in $P \times Q$ if $x \leq x'$ in P and $y \leq y'$ in Q. Recall that the poset **n** is formed by the set [n] with its usual order. By Corollary 2.2, we obtain a method to construct the poset \mathscr{P}_{n+1} from \mathscr{P}_n .

Theorem 2.3 $\mathscr{P}_{n+1} \cong \mathbf{2} \times \mathscr{P}_n$ if *n* is even; $\mathscr{P}_{n+1} \cong (\mathbf{2} \times \mathscr{P}_n) \setminus (\{1\} \times \mathcal{P}_{n,\lfloor \frac{n-1}{2} \rfloor - 1})$ if *n* is odd.

Now, we derive some properties of the simplicial complex \mathscr{P}_n . By Theorem 2.3, it is easy to obtain the Möbius function of the poset \mathscr{P}_n .

Corollary 2.3 Let $\mu_n = \mu_{\mathscr{P}_n}$ be the Möbius function of the poset \mathscr{P}_n . Then $\mu_n(S,T) = (-1)^{|T|-|S|}$ for any $S \leq T$ in \mathscr{P}_n .

Proof. Obviously, $\mu_3(\emptyset, \{3\}) = -1$. By induction for n, we assume $\mu_n(S, T) = (-1)^{|T| - |S|}$ for any $S \leq T$ in \mathscr{P}_n . By Theorem 2.3, it follows that

$$\mu_{n+1}(S,T) = \begin{cases} \mu_n(S \setminus \{n+1\}, T \setminus \{n+1\}) & \text{if } n+1 \in S \cap T, \\ \mu_n(S,T) & \text{if } n+1 \notin S \cup T, \\ -\mu_n(S,T \setminus \{n+1\}) & \text{if } n+1 \notin S \text{ and } n+1 \in T \end{cases}$$

The electronic journal of combinatorics 17 (2010), #R46

for any $S \prec T$. Simple computations show that $\mu_{n+1}(S,T) = (-1)^{|T|-|S|}$.

For every $S \in \mathscr{P}_n$, we call the element S a face of \mathscr{P}_n and the dimension of S is defined to be |S| - 1, denoted dim(S). In particular, the void set \emptyset is always a face of \mathscr{P}_n of dimension -1, i.e., dim $(\emptyset) = -1$. Also define the dimension of \mathscr{P}_n by dim $(\mathscr{P}_n) = \max_{S \in \mathscr{P}_n} (\dim(S))$.

Theorem 2.4 $dim(\mathscr{P}_n) = \lfloor \frac{n-1}{2} \rfloor - 1.$

Proof. Taking $S = \{3, 5, \dots, 2\lfloor \frac{n-1}{2} \rfloor + 1\}$, by Theorem 2.1, we have $S \in \mathscr{P}_n$. From Corollary 2.1 it follows that the dimension of \mathscr{P}_n is $\lfloor \frac{n-1}{2} \rfloor - 1$.

Define $\mathcal{P}_{n,i}$ as the set of all the faces of dimension i in \mathscr{P}_n , i.e., $\mathcal{P}_{n,i} = \{S \in \mathcal{P}_n \mid |S| = i+1\}$ for any $-1 \leq i \leq \lfloor \frac{n-1}{2} \rfloor - 1$. Let $p_{n,i} = |\mathcal{P}_{n,i}|$. The sequence $(p_{n,-1}, p_{n,0}, \ldots, p_{n,\lfloor \frac{1}{2}(n-1) \rfloor - 1})$ is called the *f*-vector of the simplicial complex \mathscr{P}_n . Define

the *f*-polynomial of \mathscr{P}_n as $\mathscr{P}_n(x) = \sum_{i=0}^{\lfloor \frac{1}{2}(n-1) \rfloor} p_{n,i-1} x^{\lfloor \frac{1}{2}(n-1) \rfloor - i}.$

To study the *f*-vector of \mathscr{P}_n , we introduce the concept of left factors of Dyck path. An *n*-Dyck path is a lattice path in the first quadrant starting at (0,0) and ending at (2n,0) with only two kinds of steps—rise step: U = (1,1) and fall step: D = (1,-1). We can also consider an *n*-Dyck path *P* as a word of 2n letters using only *U* and *D*. Let $L = w_1 w_2 \cdots w_n$ be a word, where $w_j \in \{U, D\}$ and $n \ge 0$. If there is another word *R* which consists of *U* and *D* such that *LR* forms a Dyck path, then *L* is called an *n*-left factor of Dyck paths. Let \mathcal{L}_n denote the set of all *n*-left factors of Dyck paths. For any $i \ge 0$, let $\mathcal{L}_{n,i}$ denote the set of all *n*-left factors of Dyck paths from (0,0) to (n, n - 2i). It is well known that $|\mathcal{L}_n|$, the cardinality of \mathcal{L}_n , equals the *n*th central binomial number $b_n = \binom{n}{\lfloor \frac{n}{2} \rfloor}$ and $|\mathcal{L}_{n,i}| = \frac{n-2i+1}{i} \binom{n}{i-1}$ (see Cori and Viennot [2]).

In the following lemma, we give a bijection ϕ from the set \mathcal{P}_n to the set \mathcal{L}_{n-1} .

Lemma 2.1 There is a bijection ϕ between the set \mathcal{P}_n and the set \mathcal{L}_{n-1} for any $n \ge 3$. Furthermore, the number of elements in \mathscr{P}_n is $\binom{n-1}{\lfloor \frac{n-1}{2} \rfloor}$.

Proof. For any $S \in \mathcal{P}_n$, we construct a word $\phi(S) = w_1 w_2 \cdots w_{n-1}$ as follows:

$$w_i = \begin{cases} D & \text{if } i+1 \in S \\ U & \text{if } i+1 \notin S \end{cases}$$

for any $i \in [n-1]$. Theorem 2.1 implies $\phi(S)$ is an (n-1)-left factor of a Dyck path. Conversely, for any an *n*-left factor $w_1w_2\cdots w_{n-1}$ of a Dyck path, let $S = \{i+1 \mid w_i = D\}$. Then $VP_n(S) \neq \emptyset$. Thus the mapping ϕ is a bijection. Note that the number of (n-1)-left factors of Dyck paths is $\binom{n-1}{\lfloor \frac{n-1}{2} \rfloor}$. Hence, $|\mathcal{P}_n| = \binom{n-1}{\lfloor \frac{n-1}{2} \rfloor}$.

Corollary 2.4 Let $n \ge 3$. There is a bijection between the set $\mathcal{P}_{n,i}$ and the set $\mathcal{L}_{n-1,i+1}$ for any $-1 \le i \le \lfloor \frac{n-1}{2} \rfloor - 1$. Furthermore, we have

$$p_{n,i} = \begin{cases} 1 & if \quad i = -1, \\ \frac{n-2i-2}{i+1} \binom{n-1}{i} & if \quad 0 \leq i \leq \lfloor \frac{n-1}{2} \rfloor - 1. \end{cases}$$

Proof. We just consider the case with $i \ge 0$. For any $S \in \mathcal{P}_{n,i}$, since |S| = i + 1, the number of the letter D in the word $\phi(S)$ is i + 1. Hence, $\phi(S)$ is a left factor of a Dyck path from (0,0) to (n-1, n-2i-3). So, $\phi(S) \in \mathcal{L}_{n-1,i+1}$. Hence, $p_{n,i} = |\mathcal{L}_{n-1,i+1}| = \frac{n-2i-2}{i+1} \binom{n-1}{i}$.

Corollary 2.5 Let $n \ge 3$. The sequence $(p_{n,-1}, p_{n,0}, \ldots, p_{n,\lfloor \frac{1}{2}(n-1)\rfloor - 1})$ satisfies the following recurrence relation: for any even integer n,

$$p_{n+1,i} = \begin{cases} p_{n,i} & \text{if } i = -1, \\ p_{n,i-1} + p_{n,i} & \text{if } i = 0, 1, \cdots, \frac{n}{2} - 2, \\ p_{n,i-1} & \text{if } i = \frac{n}{2} - 1; \end{cases}$$

for any odd integer n,

$$p_{n+1,i} = \begin{cases} p_{n,i} & \text{if } i = -1, \\ p_{n,i-1} + p_{n,i} & \text{if } i = 0, 1, \cdots, \frac{n-3}{2}, \end{cases}$$

with initial conditions $(p_{3,-1}, p_{3,0}) = (1, 1)$.

Proof. First, we consider the case of an even integer n. It is easy to see $p_{n+1,-1} = p_{n,-1} = 1$.

For any $S \in \mathcal{P}_{n+1,\frac{1}{2}n-1}$, Corollary 2.2 tells us $n+1 \in S$. Note that $S \in \mathcal{P}_{n+1,\frac{1}{2}n-1}$ if and only if $S \setminus \{n+1\} \in \mathcal{P}_{n,\frac{1}{2}n-2}$. Hence, $p_{n+1,\frac{1}{2}n-1} = p_{n,\frac{1}{2}n-2}$.

For every $i \in \{0, 1, \ldots, \frac{1}{2}n - 2\}$, it is easy to see $\mathcal{P}_{n,i} \subseteq \mathcal{P}_{n+1,i}$. For any $S \in \mathcal{P}_{n+1,i}$ with $n + 1 \in S$, $S \setminus \{n + 1\}$ can be viewed as an element of $\mathcal{P}_{n,i-1}$. Conversely, for any $S \in \mathcal{P}_{n,i-1}$, Corollary 2.2 implies $S \cup \{n + 1\} \in \mathcal{P}_{n+1,i}$. Hence, $p_{n+1,i} = p_{n,i-1} + p_{n,i}$. Similarly, we can consider the case of an odd integer n.

Theorem 2.5 Let $n \ge 3$.

(1) The f-polynomial $\mathscr{P}_n(x)$ of the simplicial complex \mathscr{P}_n satisfies the following recurrence relation:

$$x^{\varepsilon(n)}\mathscr{P}_{n+1}(x) = (1+x)\mathscr{P}_n(x) - \varepsilon(n)\frac{2}{n+1}\binom{n-1}{\frac{n-1}{2}}$$

for any n, where $\varepsilon(n) = 0$ if n is even; $\varepsilon(n) = 1$ otherwise, with initial condition $\mathscr{P}_3(x) = x + 1$.

(2) Let
$$\mathscr{P}(x,y) = \sum_{n \ge 3} \mathscr{P}_n(x)y^n$$
. Then $\mathscr{P}(x,y) = \left[\frac{(1+y+xy)[1+x-C(y^2)]}{x-(x+1)^2y^2} - 1\right]y^2$,
where $C(y) = \frac{1-\sqrt{1-4y}}{2y}$.

Proof. (1) Obviously, $\mathscr{P}_3(x) = x + 1$. Given an odd integer n, we suppose n = 2i + 1 with $i \ge 1$. Corollary 2.5 implies $x \mathscr{P}_{2i+2}(x) = (1+x) \mathscr{P}_{2i+1}(x) - \frac{1}{(i+1)} \binom{2i}{i}$. Similarly, given an even integer n, we suppose n = 2i with $i \ge 2$. By Corollary 2.5, we have $\mathscr{P}_{2i+1}(x) = (1+x) \mathscr{P}_{2i}(x)$.

(2) Let $\mathscr{P}_{odd}(x,y) = \sum_{i \ge 1} \mathscr{P}_{2i+1}(x)y^{2i+1}$ and $\mathscr{P}_{even}(x,y) = \sum_{i \ge 2} \mathscr{P}_{2i}(x)y^{2i}$. We have $\mathscr{P}_{odd}(x,y) = (x+1)y^3 + (x+1)y\mathscr{P}_{even}(x,y)$ and $\mathscr{P}(x,y) = \mathscr{P}_{odd}(x,y) + \mathscr{P}_{even}(x,y)$. It is easy to check $x\mathscr{P}_{2i+3}(x) = (1+x)^2\mathscr{P}_{2i+1}(x) - \frac{1}{i+1}\binom{2i}{i}(x+1)$. So, $\mathscr{P}_{odd}(x,y)$ satisfies the following equation

$$x\mathscr{P}_{odd}(x,y) = (x+1)^2 y^2 \mathscr{P}_{odd}(x,y) + (x+1)y^3 [1+x - C(y^2)],$$

where $C(y) = \frac{1-\sqrt{1-4y}}{2y}$. Equivalently, $\mathscr{P}_{odd}(x,y) = \frac{(x+1)y^3[1+x-C(y^2)]}{x-(x+1)^2y^2}$. Hence $\mathscr{P}(x,y) = \left[\frac{(1+y+xy)[1+x-C(y^2)]}{x-(x+1)^2y^2} - 1\right]y^2$.

Let $\mathscr{H}_n(x) = \mathscr{P}_n(x-1) = \sum_{i=0}^{\lfloor \frac{1}{2}(n-1) \rfloor} h_{n,i} x^{\lfloor \frac{1}{2}(n-1) \rfloor - i}$. The polynomial $\mathscr{H}_n(x)$ and the sequence $(h_{n,0}, h_{n,1}, \cdots, M)$

 $h_{n,\lfloor\frac{1}{2}(n-1)\rfloor}$ are called the *h*-polynomial and the *h*-vector of \mathscr{P}_n respectively.

Corollary 2.6 Let $n \ge 3$.

(1) The h-polynomial $\mathscr{H}_n(x)$ of the simplicial complex \mathscr{P}_n satisfies the recurrence relation:

$$(x-1)^{\varepsilon(n)}\mathscr{H}_{n+1}(x) = x\mathscr{H}_n(x) - \varepsilon(n)\frac{2}{(n+1)}\binom{n-1}{\frac{n-1}{2}}$$

for any n, where $\varepsilon(n) = 0$ if n is even; $\varepsilon(n) = 1$ otherwise, with initial condition $\mathscr{H}_3(x) = x$.

(2) Let
$$\mathscr{H}(x,y) = \sum_{n \ge 3} \mathscr{H}_n(x)y^n$$
. We have $\mathscr{H}(x,y) = \left[\frac{(1+xy)[x-C(y^2)]}{x-1-x^2y^2} - 1\right]y^2$.

Proof. (1) Since $\mathscr{H}_n(x) = \mathscr{P}_n(x-1)$, by Theorem 2.5, we easily obtain $\mathscr{H}_{n+1}(x) = x\mathscr{H}_n(x)$ if *n* is even, and $(x-1)\mathscr{H}_{n+1}(x) = x\mathscr{H}_n(x) - \frac{2}{n+1}\binom{n-1}{\frac{n-1}{2}}$ if *n* is odd, with initial condition $\mathscr{H}_3(x) = x$.

(2) Since
$$\mathscr{H}(x,y) = \mathcal{P}(x-1,y)$$
, we have $\mathscr{H}(x,y) = \left[\frac{(1+xy)[x-C(y^2)]}{x-1-x^2y^2} - 1\right]y^2$.

Corollary 2.7 Let the sequence $(h_{n,0}, h_{n,1}, \dots, h_{n,\lfloor\frac{1}{2}(n-1)\rfloor})$ be the h-vector of \mathscr{P}_n . Then $h_{n,i}$ satisfies the following recurrence relation:

$$h_{n+1,i} = \begin{cases} h_{n,0} & \text{if } i = 0, \\ h_{n,i} + \varepsilon(n)h_{n+1,i-1} & \text{if } 1 \leq i \leq \lfloor \frac{n}{2} \rfloor - 1, \\ \varepsilon(n)c_{\lfloor \frac{n}{2} \rfloor} & \text{if } i = \lfloor \frac{n}{2} \rfloor, \end{cases}$$

The electronic journal of combinatorics 17 (2010), #R46

where $c_m = \frac{1}{m+1} {\binom{2m}{m}}$ and $\varepsilon(n) = 0$ if n is even; otherwise, $\varepsilon(n) = 1$, with initial conditions $(h_{3,0}, h_{3,1}) = (1, 0)$. Equivalently,

$$h_{n,i} = \frac{\lfloor \frac{n}{2} \rfloor - i}{\lfloor \frac{n}{2} \rfloor + i} \binom{\lfloor \frac{n}{2} \rfloor + i}{\lfloor \frac{n}{2} \rfloor}.$$

Proof. The recurrence relations are obtained by comparing coefficients on both sides of the identity in 2.6 (1). Consider $t_{n,i} = \frac{\lfloor \frac{n}{2} \rfloor - i}{\lfloor \frac{n}{2} \rfloor + i} {\binom{\lfloor \frac{n}{2} \rfloor + i}{\lfloor \frac{n}{2} \rfloor}}$. Note that $t_{n,i}$ and $h_{n,i}$ satisfy the same recurrence relations and $(t_{3,0}, t_{3,1}) = (1, 0)$. Hence,

$$h_{n,i} = t_{n,i} = \frac{\lfloor \frac{n}{2} \rfloor - i}{\lfloor \frac{n}{2} \rfloor + i} \binom{\lfloor \frac{n}{2} \rfloor + i}{\lfloor \frac{n}{2} \rfloor}.$$

Remark 2.1 Let $n \ge 3$. The number of left factors of the Dyck path from (0,0) to $(\lfloor \frac{n}{2} \rfloor + i - 1, \lfloor \frac{n}{2} \rfloor - i - 1)$ equals $\frac{\lfloor \frac{n}{2} \rfloor - i}{\lfloor \frac{n}{2} \rfloor + i} \begin{pmatrix} \lfloor \frac{n}{2} \rfloor + i \end{pmatrix}$ for any $0 \le i \le \lfloor \frac{n-1}{2} \rfloor$.

Define the reduced Euler characteristic of \mathscr{P}_n by $\tilde{\chi}(\mathscr{P}_n) = \sum_{i=0}^{\lfloor \frac{1}{2}(n-1) \rfloor} (-1)^{i-1} p_{n,i-1}.$

Corollary 2.8 For any $n \ge 3$, $\tilde{\chi}(\mathscr{P}_n) = \begin{cases} 0 & \text{if } n \text{ is odd,} \\ \frac{2(-1)^{\frac{n}{2}}}{n} {n-2 \choose \frac{1}{2}(n-2)} & \text{if } n \text{ is even.} \end{cases}$

Proof. Clearly, $\mathscr{P}_3(-1) = 0$. Theorem 2.5 tells us

$$\mathscr{P}_{n+1}(-1) = \begin{cases} 0 & \text{if } n \text{ is even,} \\ \frac{2}{n+1} \binom{n-1}{\frac{1}{2}(n-1)} & \text{if } n \text{ is odd} \end{cases}$$

for any $n \ge 4$. Since $\tilde{\chi}(\mathscr{P}_n) = (-1)^{\lfloor \frac{n-1}{2} \rfloor - 1} \mathscr{P}_n(-1)$, we have

$$\tilde{\chi}(\mathscr{P}_n) = \begin{cases} 0 & \text{if } n \text{ is odd,} \\ \frac{2(-1)^{\frac{n}{2}-2}}{n} \binom{n-2}{\frac{1}{2}(n-2)} & \text{if } n \text{ is even.} \end{cases}$$

Let P be a finite post. Define Z(P, i) to be the number of multichains $x_1 \leq x_2 \leq \cdots \leq x_{i-1}$ in P for any $i \geq 2$. Z(P, i) is called the *zeta polynomial* of P. We state Proposition 3.11.1*a* and Proposition 3.14.2 in [3] as the following lemma.

Lemma 2.2 [3] Suppose P is a poset.

(1) Let d_i be the number of chains $x_1 < x_2 < \dots < x_{i-1}$ in *P*. Then $Z(P, i) = \sum_{j \ge 2} d_j {i-2 \choose j-2}$.

(2) If P is simplicial and graded, then Z(P, x + 1) is the rank-generating function of P.

Corollary 2.9 Let $n \ge 3$ and $i \ge 2$. Then

(1) $Z(\mathscr{P}_n, i) = (i-1)^{\lfloor \frac{n-1}{2} \rfloor} \mathscr{P}_n(\frac{1}{i-1})$ for any $i \ge 2$,

(2) $Z(\mathscr{P}_n, i)$ satisfies the recurrence relations:

$$Z(\mathscr{P}_{n+1},i) = iZ(\mathscr{P}_n,i) - \varepsilon(n)\frac{2(i-1)^{\frac{1}{2}(n+1)}}{n+1} \binom{n-1}{\frac{1}{2}(n-1)},$$

where $\varepsilon(n) = 0$ if n is even; $\varepsilon(n) = 1$ otherwise, with initial condition $Z(\mathscr{P}_3, i) = i$.

(3) Let $Z(x,y) = \sum_{n \ge 3} Z(\mathscr{P}_n, x) y^n$. We have

$$Z(x,y) = \left[\frac{(1+xy)[x-(x-1)C(y^2(x-1))]}{1-x^2y^2} - 1\right]y^2.$$

Proof. (1) Let $\mathscr{P}_n(x)$ be the *f*-polynomial of \mathscr{P}_n . We have the rank-generating function of \mathscr{P}_n is $x^{\lfloor \frac{1}{2}(n-1) \rfloor} \mathscr{P}_n(\frac{1}{x})$. Lemma 2.2(2) implies that $Z(\mathscr{P}_n, i) = (i-1)^{\lfloor \frac{n-1}{2} \rfloor} \mathscr{P}_n(\frac{1}{i-1})$.

(2) The recurrence relations for $Z(\mathscr{P}_n, i)$ follow from Theorem 2.5. (3) Note that $Z(\mathscr{P}_n, x+1) = x^{\lfloor \frac{n-1}{2} \rfloor} \mathscr{P}_n(\frac{1}{x}) = (\sqrt{x})^{n-2+\varepsilon(n)} \mathscr{P}_n(\frac{1}{x})$. By the proof of Theorem 2.5, we have $\mathscr{P}_{odd}(x, y) = \frac{(x+1)y^3[1+x-C(y^2)]}{x-(x+1)^2y^2}$ and $\mathscr{P}_{even}(x, y) = \frac{\mathscr{P}_{odd}(x, y)-(x+1)y^3}{(x+1)y}$. Then

$$\begin{split} Z(x+1,y) &= \sum_{n \ge 3} (\sqrt{x})^{n-2+\varepsilon(n)} \mathscr{P}_n(\frac{1}{x}) y^n \\ &= \frac{1}{x} \mathscr{P}_{even}(\frac{1}{x}, y\sqrt{x}) + \frac{1}{\sqrt{x}} \mathscr{P}_{odd}(\frac{1}{x}, y\sqrt{x}) \\ &= \left[\frac{(1+y+xy)[1+x-xC(y^2x)]}{1-(x+1)^2 y^2} - 1 \right] y^2. \end{split}$$

Let $d_{\mathscr{P}_{n,i}}$ be the number of chains $S_{n,1} \prec S_{n,2} \prec \cdots \prec S_{n,i}$ of \mathscr{P}_n .

Theorem 2.6 For any $i \ge 1$,

$$d_{\mathscr{P}_{n,i}} = \sum \binom{n}{d_1, d_2, \cdots, d_{i+1}} \frac{2d_{i+1} - n}{n},$$

where the sum is over all (d_1, \dots, d_{i+1}) such that $\sum_{k=1}^{i+1} d_k = n, d_1 \ge 0, d_k \ge 1$ for all $2 \leq k \leq i \text{ and } d_{i+1} \geq n - \lfloor \frac{n-1}{2} \rfloor.$

Proof. Let $i \ge 1$ and $S_{n,1} \prec S_{n,2} \prec \cdots \prec S_{n,i}$ be a chain of \mathscr{P}_n . Suppose $|S_{n,k}| = j_k$ for any $k \in [i]$. Then $0 \le j_1 < j_2 < \cdots < j_i \le \lfloor \frac{n-1}{2} \rfloor$. There are p_{n,j_i-1} ways to obtain the set $S_{n,i}$. Given $S_{n,k}$ with $k \ge 2$, there are $\binom{j_k}{j_{k-1}}$ ways to form the subset $S_{n,k-1} \subseteq S_{n,k}$. Hence,

$$d_{\mathscr{P}_{n,i}} = \sum_{0=j_0 \leqslant j_1 < j_2 < \dots < j_i \leqslant \lfloor \frac{n-1}{2} \rfloor} \prod_{k=0}^{i-1} {j_{k+1} \choose j_k} p_{n,j_i-1}$$
$$= \sum {\binom{n}{d_1, d_2, \dots, d_{i+1}}} \frac{2d_{i+1} - n}{n},$$

where the sum is over all (d_1, \dots, d_{i+1}) such that $\sum_{k=1}^{i+1} d_k = n, d_1 \ge 0, d_k \ge 1$ for all $2 \le k \le i$ and $d_{i+1} \ge n - \lfloor \frac{n-1}{2} \rfloor$.

Corollary 2.10 For any $n \ge 3$,

$$\mathscr{P}_n(x) = \sum_{i=2}^{\lfloor \frac{n-1}{2} \rfloor + 2} \frac{x^{\lfloor \frac{n-1}{2} \rfloor + 2-i}}{(i-2)!} \prod_{j=1}^{i-2} (1-jx) \sum \binom{n}{d_1, d_2, \cdots, d_i} \frac{2d_i - n}{n}$$

where the second sum is over all (d_1, \dots, d_i) such that $\sum_{k=1}^i d_k = n, d_1 \ge 0, d_k \ge 1$ for all $2 \le k \le i-1$ and $d_i \ge n - \lfloor \frac{n-1}{2} \rfloor$.

Proof. Lemma 2.2(1) implies $Z(\mathscr{P}_n, i) = \sum_{j=2}^{\lfloor \frac{n-1}{2} \rfloor + 2} d_{\mathscr{P}_n, j-1} {\binom{i-2}{j-2}}$. By Corollary 2.9, we have

$$\mathscr{P}_n\left(\frac{1}{i-1}\right) = \left(\frac{1}{i-1}\right)^{\lfloor\frac{n-1}{2}\rfloor} \sum_{j=2}^{\lfloor\frac{n-1}{2}\rfloor+2} d_{\mathscr{P}_n,j-1}\binom{i-2}{j-2}$$

for any $i \ge 2$. Note that

$$x^{\lfloor \frac{n-1}{2} \rfloor} \sum_{j=2}^{\lfloor \frac{n-1}{2} \rfloor+2} d_{\mathscr{P}_n,j-1} \binom{\frac{1}{x}-1}{j-2} = \sum_{j=2}^{\lfloor \frac{n-1}{2} \rfloor+2} \frac{x^{\lfloor \frac{n-1}{2} \rfloor+2-j}}{(j-2)!} \prod_{k=1}^{j-2} (1-kx) d_{\mathscr{P}_n,j-1}$$

is a polynomial. Hence, $\mathscr{P}_n(x) = \sum_{j=2}^{\lfloor \frac{n-1}{2} \rfloor + 2} \frac{x^{\lfloor \frac{n-1}{2} \rfloor + 2-j}}{(j-2)!} \prod_{k=1}^{j-2} (1-kx) d_{\mathscr{P}_n, j-1}.$

3 Enumerations for Permutations in the Set $VP_n(S)$

In this section, we will consider enumerative problems of permutations in the set $VP_n(S)$. Let $vp_n(S)$ denote the number of permutations in the set $VP_n(S)$, i.e., $vp_n(S) = |VP_n(S)|$. First, we need the following lemma. **Lemma 3.1** Let $n \ge 3$ and $S \subseteq [n]$. Suppose $VP_n(S) \neq \emptyset$. Then

(1) $vp_{n+1}(S) = 2vp_n(S)$, and

(2) let $m = \max S$. We have $vp_n(S) = 2^{n-m}vp_m(S)$ for any $n \ge m$.

Proof. (1) It is easy to see $((n+1)\sigma(1)\cdots\sigma(n)) \in VP_{n+1}(S)$ and $(\sigma(1)\cdots\sigma(n)(n+1)) \in VP_{n+1}(S)$ for any $\sigma = (\sigma(1)\cdots\sigma(n)) \in VP_n(S)$. Conversely, for any $\sigma \in VP_{n+1}(S)$, the position of the integer n+1 is 1 or n+1, i.e., $\sigma^{-1}(n+1) = 1$ or n+1, since $n+1 \notin S$. Hence, $vp_{n+1}(S) = 2vp_n(S)$.

(2) Iterating the identity of Lemma 3.1(1), we obtain $vp_n(S) = 2^{n-m}vp_m(S)$.

For any $\sigma \in \mathfrak{S}_n$, let τ be a subsequence $(\sigma(j_1)\sigma(j_2)\cdots\sigma(j_k))$ of $(\sigma(1)\cdots\sigma(n))$, where $1 \leq j_1 < j_2 < \cdots < j_k \leq n$. Define $\phi_{\sigma,\tau}$ as an increasing bijection of $\{\sigma(j_i) \mid 1 \leq i \leq k\}$ onto [k]. Let $\phi_{\sigma}(\tau) = (\phi_{\sigma,\tau}(\sigma(j_1))\phi_{\sigma,\tau}(\sigma(j_2))\cdots\phi_{\sigma,\tau}(\sigma(j_k)))$. For the cases with |S| = 0, 1, 2, in the following theorem, we derive the explicit formulae for $vp_n(S)$

Theorem 3.1 Let $n \ge 3$. Then

(1)
$$vp_n(\emptyset) = 2^{n-1}$$
,

(2) $vp_n(\{i\}) = 2^{n-2}(2^{i-2}-1)$ for any $i \in [3,n]$, and

 $\begin{array}{l} (3) \ vp_n(\{i,j\}) = 2^{n-3}(2^{i-2}-1)(2^{j-i-1}-1) + 2^{n+j-i-5} \cdot 3(3^{i-2}-2^{i-1}+1) \ for \ any \ i,j \in [3,n] \\ and \ i < j. \end{array}$

Proof. (1) For any $\sigma \in \mathfrak{S}_n$, suppose the position of the integer 1 is i+1, i.e., $\sigma^{-1}(1) = i+1$. Then $\sigma \in VP_n(\emptyset)$ if and only if σ satisfies $\sigma(1) > \cdots > \sigma(i+1) < \cdots < \sigma(n)$. For each integer $j \neq 1$, the position of j has two possibilities at the left or right of the integer 1. Hence, $vp_n(\emptyset) = 2^{n-1}$.

(2) By Lemma 3.1(2), we first consider the number of permutations in the set $VP_i(\{i\})$, where $i \ge 3$. For any $\sigma \in VP_i(\{i\})$, suppose the position of the integer i is k + 1, i.e., $\sigma^{-1}(i) = k + 1$. Then $1 \le k \le i - 2$, $\phi_{\sigma}(\sigma(1) \cdots \sigma(k)) \in VP_k(\emptyset)$ and $\phi_{\sigma}(\sigma(k + 2) \cdots \sigma(i)) \in VP_{i-k-1}(\emptyset)$. There are $\binom{i-1}{k}$ ways to form the set $\{\sigma(1), \cdots, \sigma(k)\}$. So, $vp_i(\{i\}) = \sum_{k=1}^{i-2} \binom{i-1}{k} 2^{k-1} 2^{i-k-2} = 2^{i-2} (2^{i-2} - 1)$. Hence, $vp_n(\{i\}) = 2^{n-2} (2^{i-2} - 1)$.

(3) It is easy to see the identity holds for i = 3 and j = 4. By Lemma 3.1(2), we first consider the number of permutations in the set $VP_j(\{i, j\})$, where $3 \leq i < j$. We begin from the case $\sigma \in VP_j(\{i, j\})$ with $\sigma^{-1}(i) < \sigma^{-1}(j)$. Let

$$T_{1}(\sigma) = \{\sigma(k) \mid \sigma(k) < i \text{ and } k < \sigma^{-1}(i)\},\$$

$$T_{2}(\sigma) = \{\sigma(k) \mid \sigma(k) < i \text{ and } \sigma^{-1}(i) < k < \sigma^{-1}(j)\},\$$

$$T_{3}(\sigma) = \{\sigma(k) \mid \sigma(k) < i \text{ and } k > \sigma^{-1}(j)\}.$$

Note that $T_k(\sigma) \neq \emptyset$ for k = 1, 2 since σ has a value-peak i and $\bigcup_{k=1}^3 T_k(\sigma) = [i-1]$. Let

$$T_4(\sigma) = \{\sigma(k) \mid i < \sigma(k) < j \text{ and } k < \sigma^{-1}(i)\}$$

$$T_5(\sigma) = \{\sigma(k) \mid i < \sigma(k) < j \text{ and } \sigma^{-1}(i) < k < \sigma^{-1}(j)\}$$

The electronic journal of combinatorics 17 (2010), #R46

We discuss the following two subcases.

Subcase 1. $T_3(\sigma) = \emptyset$. Let $T_6(\sigma) = \{\sigma(k) \mid i < \sigma(k) < j, k > \sigma^{-1}(j)\}$. Then $T_6(\sigma) \neq \emptyset$ since σ must have a value-peak j and $\bigcup_{k=4}^{6} T_k(\sigma) = [i+1, j-1]$. For k = 1, 2, 6, the subsequences of σ , that are determined by elements from $T_k(\sigma)$, correspond to a permutation in $VP_{|T_k(\sigma)|}(\emptyset)$. The subsequences of σ , that are determined by elements from $T_4(\sigma)$ and $T_5(\sigma)$, are decreasing and increasing, respectively. So, the number of permutations under this subcase is

$$\sum_{(T_1,T_2)} \binom{i-1}{|T_1|,|T_2|} 2^{|T_1|-1} 2^{|T_2|-1} \sum_{(T_4,T_5,T_6)} \binom{j-i-1}{|T_4|,|T_5|,|T_6|} 2^{|T_6|-1} = 2^{j-4} (2^{i-2}-1)(2^{j-i-1}-1),$$

where the first sum is over all pairs (T_1, T_2) such that $T_i \neq \emptyset$ for i = 1, 2 and $T_1 \cup T_2 = [i-1]$; the second sum is over all triples (T_4, T_5, T_6) such that $T_6 \neq \emptyset$ and $T_4 \cup T_5 \cup T_6 = [i+1, j-1]$.

Subcase 2. $T_3(\sigma) \neq \emptyset$. Suppose min $T_3(\sigma) = s$. Let

$$T_{6}(\sigma) = \{\sigma(k) \mid i < \sigma(k) < j \text{ and } \sigma^{-1}(j) < k < \sigma^{-1}(s)\}, T_{7}(\sigma) = \{\sigma(k) \mid i < \sigma(k) < j \text{ and } k > \sigma^{-1}(s)\}.$$

Then, for k = 1, 2, 3, the subsequences of σ , that are determined by elements from $T_k(\sigma)$, correspond to a permutation in $VP_{|T_k(\sigma)|}(\emptyset)$. The subsequences of σ , that are determined by elements from $T_4(\sigma)$ and $T_6(\sigma)$, are decreasing. The subsequences of σ , that are determined by elements from $T_5(\sigma)$ and $T_7(\sigma)$, are increasing. So, the number of permutations under this subcase is

$$\sum_{(T_1,T_2,T_3)} \binom{i-1}{|T_1|,|T_2|,|T_3|} 2^{|T_1|-1} 2^{|T_2|-1} 2^{|T_3|-1} 4^{j-i-1} = 2^{2j-i-6} \cdot 3(3^{i-2} - 2^{i-1} + 1),$$

where the sum is over all triples (T_1, T_2, T_3) such that $T_i \neq \emptyset$ for i = 1, 2, 3 and $T_1 \cup T_2 \cup T_3 = [i-1]$.

Similarly, we may consider the case $\sigma \in VP_j(\{i, j\})$ with $\sigma^{-1}(i) > \sigma^{-1}(j)$. Therefore, $vp_j(\{i, j\}) = 2[2^{j-4}(2^{i-2}-1)(2^{j-i-1}-1) + 2^{2j-i-6} \cdot 3(3^{i-2}-2^{i-1}+1)]$. In general, for any $n \ge 3$ and $3 \le i < j \le n$,

$$vp_n(\{i,j\}) = 2^{n-3}(2^{i-2}-1)(2^{j-i-1}-1) + 2^{n+j-i-5} \cdot 3(3^{i-2}-2^{i-1}+1).$$

In the following lemma, we give a recurrence relation for $vp_n(S)$.

Lemma 3.2 Let $n \ge 3$ and $S \subseteq [n-1]$. Then

$$vp_n(S \cup \{n\}) = [n - 2 - 2|S|]vp_{n-1}(S) + \sum_{j \notin S, j < n} 2vp_{n-1}(S \cup \{j\}).$$

The electronic journal of combinatorics 17 (2010), #R46

Proof. Suppose $\sigma \in VP_{n-1}(S)$. We want to form a new permutation $\tau \in VP_n(S \cup \{n\})$ by inserting the integer n into σ . For any $j \in S$, since the integer j is a value-peak in the new permutation, we can not insert n into σ beside j. But the integer n must be a value-peak. So, there are (n-2-2|S|) ways to form a new permutation τ from σ such that $\tau \in VP_n(S \cup \{n\})$.

For any $j \notin S$ with j < n and $\sigma \in VP_{n-1}(S \cup \{j\})$, we must insert n into σ beside j such that n becomes a value-peak. So, there are 2 ways to form a new permutation τ from σ such that $\tau \in VP_n(S \cup \{n\})$.

Hence,
$$vp_n(S \cup \{n\}) = [n - 2 - 2|S|]vp_{n-1}(S) + \sum_{j \notin S, j < n} 2 \cdot vp_{n-1}(S \cup \{j\}).$$

For any $S \in [n]$, suppose $S = \{i_1, i_2, \ldots, i_k\}$. Let \mathbf{x}_S stand for the monomial $x_{i_1}x_{i_2}\cdots x_{i_k}$; In particular, let $\mathbf{x}_{\emptyset} = 1$. Given $n \ge 3$, we define a generating function as follows

$$g_n(x_1, x_2, \dots, x_n; y) = \sum_{\sigma \in \mathfrak{S}_n} \mathbf{x}_{VP(\sigma)} y^{|VP(\sigma)|}.$$

We also write $g_n(x_1, x_2, \ldots, x_n; y)$ as g_n for short. By the recurrence relation as above, we obtain the following result for the generating function g_n .

Corollary 3.1 Let $n \ge 3$ and $g_n = \sum_{\sigma \in \mathfrak{S}_n} \mathbf{x}_{VP(\sigma)} y^{|VP(\sigma)|}$. Then g_n satisfies the following recursion:

$$g_{n+1} = [2 + (n-1)x_{n+1}y]g_n + 2x_{n+1}\sum_{i=1}^n \frac{\partial g_n}{\partial x_i} - 2x_{n+1}y^2\frac{\partial g_n}{\partial y}.$$

for all $n \ge 3$ with initial condition $g_3 = 4 + 2x_3y$, where the notation $\frac{\partial g_n}{\partial y}$ denotes partial differentiation of g_n with respect to y.

Proof. Obviously, $g_3 = 4 + 2x_3y$ and $\sum_{\sigma \in \mathfrak{S}_n} \mathbf{x}_{VP(\sigma)} y^{|VP(\sigma)|} = \sum_{S \subseteq [2,n]} vp_n(S) \mathbf{x}_S y^{|S|}$. Hence,

$$g_{n+1} = \sum_{S \subseteq [n+1]} v p_{n+1}(S) \mathbf{x}_S y^{|S|}$$

$$= \sum_{S \subseteq [n+1], n+1 \in S} v p_{n+1}(S) \mathbf{x}_S y^{|S|} + \sum_{S \subseteq [n+1], n+1 \notin S} v p_{n+1}(S) \mathbf{x}_S y^{|S|}$$

$$= \sum_{S \subseteq [n]} \left[(n-1-2|S|) v p_n(S) + \sum_{i \in [n] \setminus S} 2v p_n(S \cup \{i\}) \right] \mathbf{x}_S x_{n+1} y^{|S|+1} + 2g_n$$

$$= 2 \sum_{S \subseteq [n]} \sum_{i \in [n] \setminus S} v p_n(S \cup \{i\}) \mathbf{x}_S x_{n+1} y^{|S|+1} - 2 \sum_{S \subseteq [n]} |S| v p_n(S) \mathbf{x}_S x_{n+1} y^{|S|+1} + [2 + (n-1)x_{n+1}y]g_n.$$

Note that

$$\frac{\partial g_n}{\partial y} = \sum_{S \subseteq [n]} |S| v p_n(S) \mathbf{x}_S y^{|S|-1}$$

The electronic journal of combinatorics 17 (2010), #R46

and

$$\sum_{S\subseteq[n]} \sum_{i\in[n]\setminus S} vp_n(S\cup\{i\}) \mathbf{x}_S x_{n+1} y^{|S|+1}$$
$$= \sum_{S\subseteq[n],S\neq\emptyset} vp_n(S) x_{n+1} y^{|S|} \sum_{i\in S} \frac{\mathbf{x}_S}{x_i}$$
$$= x_{n+1} \sum_{i=1}^n \frac{\partial g_n}{\partial x_i}.$$

Therefore, $g_{n+1} = [2 + (n-1)x_{n+1}y]g_n + 2x_{n+1}\sum_{i=1}^n \frac{\partial g_n}{\partial x_i} - 2x_{n+1}y^2 \frac{\partial g_n}{\partial y}.$

By computer search, we obtain $vp_n(S)$ for all $3 \leq n \leq 8$ and $S \subseteq [3, n]$ and list them in Appendix. In Table 1., we give the generating functions g_n for $3 \leq n \leq 5$.

The generating function g_n for $3 \leq n \leq 5$
$g_3 = 4 + 2x_3y$
$g_4 = 8 + 4x_3y + 12x_4y$
$g_5 = 16 + 8x_3y + 24x_4y + 56x_5y + 4x_3x_5y^2 + 12x_4x_5y^2$

Table 1. The generating function g_n for $3 \leq n \leq 5$.

Corollary 3.2 Let $n \ge 3$ and $S \subseteq [3, n]$.

(1) Suppose $S = \{i_1, \ldots, i_k\}$, where $i_1 < i_2 < \ldots < i_k$. If there exists $j \in [k]$ such that $i_j = 2j+1$, then $vp_n(S \cup \{n\}) = [n-2-2|S|]vp_{n-1}(S) + \sum_{i \notin S, 2j+2 < i < n} 2vp_{n-1}(S \cup \{i\}).$

(2)
$$vp_n(\{3, 5, \dots, 2k+1\}) = 2^{n-k-1} \text{ for all } k \in [\lfloor \frac{n-1}{2} \rfloor].$$

Proof. (1) By Theorem 2.1, $VP_n(S \cup i) = \emptyset$ for any $i \notin S$ and i < 2j+1 since $i_j = 2j+1$. We immediately obtain the results as desired.

(2) By induction on k. For $\bar{k} = 1$, by Theorem 3.1(2), we have $vp_n(\{3\}) = 2^{n-2}$. Suppose the identity holds for any $\bar{k} = k$. For $\bar{k} = k+1$, by Lemma 3.2 and the induction hypothesis, $vp_{2k+3}(\{3, 5, \ldots, 2k+3\}) = vp_{2k+2}(\{3, 5, \ldots, 2k+1\}) = 2vp_{2k+1}(\{3, 5, \ldots, 2k+1\}) = 2 \cdot 2^k = 2^{k+1}$. Hence $vp_n(\{3, 5, \ldots, 2k+3\}) = 2^{n-2k-3} \cdot 2^{k+1} = 2^{n-k-2}$.

Now, we give another recurrence relation for $vp_n(S)$.

Lemma 3.3 Let $n \ge 3$ and $S \subseteq [3, n]$. Suppose $VP_n(S) \ne \emptyset$ and let $r = \max S$ if $S \ne \emptyset$, 1 otherwise. For any $0 \le k \le n - r - 1$, we have

$$vp_n(S \cup [n-k+1,n]) = 2(k+1)vp_{n-1}(S \cup [n-k,n-1]) + k(k+1)vp_{n-2}(S \cup [n-k,n-2]).$$

Proof. For any $\sigma \in VP_n(S \cup [n-k+1,n])$, we consider the following four cases.

Case 1. There are no integers $i \in [n-k+1, n]$ such that the position of i is beside n-k in σ , i.e., $|\sigma^{-1}(i) - \sigma^{-1}(n-k)| = 1$. Then $\sigma^{-1}(n-k) = 1$ or n since the permutation σ

has not a value-peak n-k. We obtain a new permutation τ by exchanging the positions of n-k and n in σ . Clearly, $\tau \in VP_n(S \cup [n-k, n-1])$. Lemma 3.1 (1) tells us $vp_n(S \cup [n-k, n-1]) = 2vp_{n-1}(S \cup [n-k, n-1])$. Hence, the number of permutations under this case is $2 \cdot vp_{n-1}(S \cup [n-k, n-1])$.

Case 2. There are exactly two integers $j, m \in [n-k+1, n]$ such that $|\sigma^{-1}(j) - \sigma^{-1}(n-k)| = 1$ and $|\sigma^{-1}(m) - \sigma^{-1}(n-k)| = 1$. Deleting j and m, we obtain a subsequence τ of σ . Then $\phi_{\sigma}(\tau) \in VP_{n-2}(S \cup [n-k, n-2])$. Note that there are k(k-1) ways to form the pairs (j, m). Hence, the number of permutations under this case is $k(k-1)vp_{n-2}(S \cup [n-k, n-2])$.

Case 3. There is exactly one integer $j \in [n-k+1, n]$ such that $|\sigma^{-1}(j) - \sigma^{-1}(n-k)| = 1$. Then there are k ways to form the set $\{j\}$. Let τ be the subsequence of σ obtained by deleting j. There are the following two subcases.

Subcase 3.1. $\sigma^{-1}(n-k) \neq 1$ and n. Then $\phi_{\sigma}(\tau) \in VP_{n-1}(S \cup [n-k, n-1])$. Hence, the number of permutations under this subcase is $k \cdot vp_{n-1}(S \cup [n-k, n-1])$.

Subcase 3.2. $\sigma^{-1}(n-k) = 1$ or n. Then $\phi_{\sigma}(\tau) \in VP_{n-2}(S \cup [n-k, n-2])$. Hence, the number of permutations under this subcase is $k \cdot vp_{n-2}(S \cup [n-k, n-2])$.

So,

$$\begin{split} &vp_n(S \cup [n-k+1,n]) \\ &= 2vp_{n-1}(S \cup [n-k,n-1]) + k(k-1)vp_{n-2}(S \cup [n-k,n-2]) \\ &+ 2k \cdot vp_{n-1}(S \cup [n-k,n-1]) + 2k \cdot vp_{n-2}(S \cup [n-k,n-2]) \\ &= 2(k+1)vp_{n-1}(S \cup [n-k,n-1]) + k(k+1)vp_{n-2}(S \cup [n-k,n-2]). \end{split}$$

Now we associate the recurrence relation in Lemma 3.3 with a lattice path in the plane $\mathbb{Z} \times \mathbb{Z}$, where \mathbb{Z} is the set of integers. In particular, let (n, k), (n - 1, k) and (n - 2, k - 1) be three vertices in the plane $\mathbb{Z} \times \mathbb{Z}$. We get a step (1, 0) (resp. (2, 1)) by connecting the vertex (n - 1, k) (resp. (n - 2, k - 1)) to the vertex (n, k) and give this step a weight 2(k + 1) (resp. k(k + 1)). Fig. 2 shows the resulting graph.

Fig. 2. the graph resulting from the recurrence relation.

Fixing a set S, let the weight of the vertex (n, k) be $vp_n(S \cup [n - k + 1, n])$. It is easy to see we can obtain the recurrence relation for $vp_n(S)$ by Fig. 2. So we introduce the concept of value-peak path in the plane $\mathbb{Z} \times \mathbb{Z}$ as follows.

A value-peak path is a lattice path in the first quadrant starting at (0,0) and ending at (n,k) with only two kinds of steps—*horizon step* H = (1,0) and *rise step* R = (2,1). We also consider a value-peak path P from (0,0) to (n,k) as a word of n-k letters using only H and R. Let $P_{n,k}$ be the set of all the value-peak paths from (0,0) to (n,k). Let *i* be a nonegative integer and $P = e_1 e_2 \cdots e_{n-k} \in P_{n,k}$. For every $j \in [n-k]$, define the weight $w_i(e_j)$ of the step e_j as follows: if the step e_j connects a vertex (x, y) to a vertex (x+1, y), then $w_i(e_j) = 2i + 2(y+1)$; if the step e_j connects a vertex (x, y) to a vertex (x+2, y+1), then $w_i(e_j) = (y+i+1)(y+i+2)$. Furthermore, define the weight of the value-peak path P, denoted $w_i(P)$, as $w_i(P) = \prod_{j=1}^{n-k} w_i(e_j)$ and $w(i; n, k) = \sum_{P \in P_{n,k}} w_i(P)$. For any i < 0, let w(i; n, k) = 0.

Example 3.1 Let n = 8, k = 3 and i = 0. We draw a value-peak path $P = e_1 e_2 e_3 e_4 e_5 =$

Example 3.1 Let n = 3, k = 3 and i = 0. We draw a value-peak path $T = e_1e_2e_3e_4e_5 = HRRHR$ from (0,0) to (8,3) in Fig. 3. For every step e_j in P, we give a label on the step to denote the weight of e_j , i.e., $w_0(e_1) = 2$, $w_0(e_2) = 2$, $w_0(e_3) = 6$, $w_0(e_4) = 6$, $w_0(e_5) = 12$. Hence, $w_0(P) = 1728$.

Fig. 3. A value-peak path P with weights from (0,0) to (8,3).

Lemma 3.4
$$w(i;n,k) = \frac{(i+k)!(i+k+1)!}{i!(i+1)!} [x^{n-2k}] \prod_{m=0}^{k} \frac{1}{1-2(i+1+m)x}$$

Proof. Suppose $P = e_1 e_2 \cdots e_{n-k} \in P_{n,k}$ and let $\mathcal{R} = \{j \mid e_j = R\}$, then $|\mathcal{R}| = k$. Furthermore, suppose $\mathcal{R} = \{e_{j_1}, \cdots, e_{j_k}\}$, where $0 = j_0 < j_1 < j_2 < \cdots < j_k \leq n-k-r = j_{k+1}$ and it follows that

$$w_i(P) = \prod_{m=0}^{k} [2i + 2m + 2]^{j_{m+1}-j_m-1} \prod_{m=0}^{k-1} (m+i+1)(m+i+2).$$

Let $t_m = j_{m+1} - j_m - 1$ for any $0 \le m \le k$. Then $t_m \ge 0$ and $\sum_{m=0}^{k} t_m = n - 2k$. So,

$$w(i;n,k) = \sum_{m=0}^{k} \prod_{m=0}^{k} [2i+2m+2]^{t_m} \prod_{m=0}^{k-1} (m+i+1)(m+i+2)$$
$$= \frac{(i+k)!(i+k+1)!}{i!(i+1)!} \sum_{m=0}^{k} \prod_{m=0}^{k} [2(i+m+1)]^{t_m}$$

where the sum is over all (k + 1)-tuples (t_0, t_1, \dots, t_k) such that $\sum_{m=0}^{k} t_m = n - r - 2k$ and $t_m \ge 0$. It is easy to see the sum is the coefficient of x^{n-2k} in the power series $\prod_{m=0}^{k} \frac{1}{1-2(i+1+m)x}$. This completes the proof.

The electronic journal of combinatorics 17 (2010), #R46

Lemma 3.5 Let $n \ge 3$ and $S \subseteq [3, n]$. Then

(1)
$$vp_n([n-k+1,n]) = w(0;n-1,k).$$

(2) Suppose $S \neq \emptyset$ and $VP_n(S) \neq \emptyset$. Let $r = \max S$. For any $0 \leq k \leq n - r - 1$, we have

$$vp_n(S \cup [n-k+1,n]) = \sum_{i=0}^m w(k-i;m+i,i)vp_{n-m-i}(S \cup [r+1,n-m-i]),$$

where m = n - r - k.

Proof. (1) Fix $k \ge 0$. By induction on $n \ge k$. For $\bar{n} = k$, we have $vp_k([1, k]) = 0$. It is easy to see $w(0; k - 1, k) = k!(k + 1)![x^{-k-1}] \prod_{m=0}^{k} \frac{1}{1-2(m+1)x} = 0$. Hence, the identity holds for $\bar{n} = k$. Suppose the identity holds for all $\bar{n} \le n$. For $\bar{n} = n + 1$, by Lemma 3.3 and the induction hypothesis,

$$vp_{n+1}([n-k+2, n+1]) = 2(k+1)vp_n([n-k+1, n]) + k(k+1)vp_{n-1}([n-k+1, n-1]) = 2(k+1)w(0; n-1, k) + k(k+1)w(0; n-2, k-1) = w(0; n, k).$$

Thus the identity holds for $\bar{n} = n + 1$.

(2) Let us apply induction on $\overline{m} = n - r - k$. For $\overline{m} = 1$, we have n - k = r + 1. By Lemma 3.3,

$$\begin{aligned} &vp_n(S \cup [n-k+1,n]) \\ &= 2(k+1)vp_{n-1}(S \cup [r+1,n-1]) + k(k+1)vp_{n-2}(S \cup [r+1,n-2]) \\ &= w(k;1,0)vp_{n-1}(S \cup [r+1,n-1]) + w(k-1;2,1)vp_{n-2}(S \cup [r+1,n-2]) \\ &= \sum_{i=0}^{\bar{m}} w(k-i;\bar{m}+i,i)vp_{n-\bar{m}-i}(S \cup [r+1,n-\bar{m}-i]). \end{aligned}$$

Hence the identity holds for $\bar{m} = 1$. Suppose the identity holds for $\bar{m} = m$. For $\bar{m} = m + 1 = n - r - k$, by Lemma 3.3,

$$\begin{aligned} vp_n(S \cup [n-k+1,n]) &= 2(k+1)vp_{n-1}(S \cup [n-k,n-1]) \\ &+ k(k+1)vp_{n-2}(S \cup [n-k,n-2]). \end{aligned}$$

By the induction hypothesis,

$$vp_{n-1}(S \cup [n-k, n-1]) = \sum_{i=0}^{m} w(k-i; m+i, i)vp_{n-1-m-i}(S \cup [r+1, n-1-m-i])$$

The electronic journal of combinatorics $\mathbf{17}$ (2010), $\#\mathrm{R46}$

and

$$vp_{n-2}(S \cup [n-k, n-2]) = \sum_{i=0}^{m} w(k-1-i; m+i, i)vp_{n-2-m-i}(S \cup [r+1, n-2-m-i]) = \sum_{i=1}^{m+1} w(k-i; m-1+i, i-1)vp_{n-1-m-i}(S \cup [r+1, n-1-m-i]).$$

It is easy to see

2(k+1)w(k-i;m+i,i) + k(k+1)w(k-i;m+i-1.i-1) = w(k-i;m+1+i,i) for all $i \in [m]$,

$$2(k+1)w(k;m,0) = w(k;m+1,0)$$

and

$$k(k+1)w(k-m-1;2m,m) = w(k-m-1;2(m+1),m+1).$$

Hence,
$$vp_n(S \cup [n-k+1,n]) = \sum_{i=0}^{m+1} w(k-i;m+1+i,i)vp_{n-1-m-i}(S \cup [r+1,n-1-m-i]).$$

For any $S \subseteq [3, n]$, recall that type(S) denotes the type of the set S.

Theorem 3.2 Let $n \ge 3$ and $S \subseteq [3,n]$. Suppose $type(S) = (r_1^{k_1}, r_2^{k_2}, \cdots, r_m^{k_m})$ with $m \ge 2$ and $VP_n(S) \ne \emptyset$. Let $r_0 = 0$, $A_i = r_i - r_{i-1} - k_i$ and $B_i = \sum_{j=i}^m k_j$ for any $1 \le i \le m$. Then

$$vp_n(S) = 2^{n-r_m} \sum_{i_m=0}^{A_m} \sum_{i_{m-1}=0}^{A_{m-1}} \cdots \sum_{i_2=0}^{A_2} \left[\prod_{s=2}^m w(B_s - \sum_{j=s}^m i_j; A_s + i_s, i_s) \right]$$
$$\cdot w(0; A_1 + B_1 - \sum_{j=2}^m i_j - 1, B_1 - \sum_{j=2}^m i_j) \right].$$

Proof. By induction on m. For $\bar{m} = 2$, by Lemma 3.5,

$$vp_{r_2}(S) = \sum_{i_2=0}^{A_2} w(k_2 - i_2; A_2 + i_2, i_2) vp_{r_1 + k_2 - i_2}([r_1 - k_1 + 1, r_1 + k_2 - i_2])$$

=
$$\sum_{i_2=0}^{A_2} w(B_2 - i_2; A_2 + i_2, i_2) w(0; A_1 + B_1 - i_2 - 1, B_1 - i_2).$$

Suppose the identity holds for $\bar{m} = m$. For $\bar{m} = m + 1$, by Lemma 3.5,

$$vp_{r_{m+1}}(S) = \sum_{t=0}^{A_{m+1}} w(k_{m+1} - t; A_{m+1} + t, t)vp_{r_m + k_{m+1} - t}(S_t),$$

The electronic journal of combinatorics 17 (2010), #R46

where $type(S_t) = (r_1^{k_1}, r_2^{k_2}, \cdots, (r_m + k_{m+1} - t)^{k_m + k_{m+1} - t})$. For every $0 \le t \le A_{m+1}$, note that $A'_{t,i} = A_i$ and $B'_{t,i} = B_i - t$ for any $1 \le i \le m$. By the induction hypothesis,

$$vp_{r_{m+1}}(S) = \sum_{t=0}^{A_{m+1}} \sum_{i_m=0}^{A_m} \sum_{i_{m-1}=0}^{A_{m-1}} \cdots \sum_{i_2=0}^{A_2} \left[w(0; A_1 + B'_{t,1} - \sum_{j=2}^m i_j - 1, B'_{t,1} - \sum_{j=2}^m i_j) \\ \cdot w(k_{m+1} - t; A_{m+1} + t, t) \prod_{s=2}^m w(B'_{t,s} - \sum_{j=s}^m i_j; A_s + i_s, i_s) \right] \\ = \sum_{i_{m+1}=0}^{A_{m+1}} \sum_{i_m=0}^{A_m} \sum_{i_{m-1}=0}^{A_{m-1}} \cdots \sum_{i_2=0}^{A_2} \left[\prod_{s=2}^{m+1} w(B_s - \sum_{j=s}^{m+1} i_j; A_s + i_s, i_s) \\ \cdot w(0; A_1 + B_1 - \sum_{j=2}^{m+1} i_j - 1, B_1 - \sum_{j=2}^{m+1} i_j) \right].$$

Example 3.2 Let n = 8 and $S = \{3, 7, 8\}$. Then $type(S) = (3^1, 8^2)$, $A_1 = 2$, $A_2 = 3$, $B_1 = 3$ and $B_2 = 2$. By Theorem 3.2, we have

$$vp_8(\{3,7,8\}) = w(2;3,0)w(0;4,3) + w(1;4,1)w(0;3,2) +w(0;5,2)w(0;2,1) + w(-1;6,3)w(0;1,0).$$

Note that

$$w(2;3,0) = 216, w(0;4,3) = 0, w(1;4,1) = 456, w(0;3,2) = 0, w(0;5,2) = 144, w(0;2,1) = 2, w(-1;6,3) = 0, w(0;1,0) = 1.$$

Thus $vp_8(\{3, 7, 8\}) = 288$.

4 Appendix

For convenience to check identities given in the previous sections, by computer search, for $1 \leq n \leq 8$, we obtain the number $vp_n(S)$ of permutations in the set $VP_n(S) \neq \emptyset$ and list them in Table 2.

n									
1	$S = \emptyset$								
-	$\frac{z-v}{1}$								
2	Ø								
	2								
3	Ø	{3}							
	4	2							
4	Ø	{3}	{4}						
	8	4	12						
5	Ø	{3}	{4}	{5}	$\{3, 5\}$	$\{4,5\}$			
	16	8	24	56	4	12			
6	Ø	{3}	{4}	$\{5\}$	<i>{</i> 6 <i>}</i>	$\{3,5\}$	$\{3, 6\}$	$\{4,5\}$	$\{4, 6\}$
	32	16	48	112	240	8	24	24	72
	$\{5, 6\}$								
	144								
7	Ø	{3}	{4}	$\{5\}$	$\{6\}$	{7}	$\{3, 5\}$	$\{3, 6\}$	$\{3,7\}$
	64	32	96	224	480	992	16	48	112
	$\{4, 5\}$	$\{4, 6\}$	$\{4,7\}$	$\{5, 6\}$	$\{5,7\}$	$\{6,7\}$	$\{3, 5, 7\}$	$\{3, 6, 7\}$	$\{4, 5, 7\}$
	48	144	336	288	688	1200	8	24	24
	$\{4, 6, 7\}$	$\{5, 6, 7\}$							
	72	144							
8	Ø	$\{3\}$	{4}	$\{5\}$	$\{6\}$	{7}	{8}	$\{3,5\}$	$\{3, 6\}$
	128	64	192	448	960	1984	4032	32	96
	$\{3,7\}$	$\{3, 8\}$	$\{4,5\}$	$\{4, 6\}$	$\{4,7\}$	$\{4, 8\}$	$\{5, 6\}$	$\{5,7\}$	$\{5, 8\}$
	224	480	96	288	672	1440	576	1376	2976
	$\{6,7\}$	$\{6, 8\}$	$\{7, 8\}$	$\{3, 5, 7\}$	$\{3, 5, 8\}$	$\{3, 6, 7\}$	$\{3, 6, 8\}$	$\{3, 7, 8\}$	$\{4, 5, 7\}$
	2400	5280	8640	16	48	48	144	288	48
	$\{4, 5, 8\}$	$\{4, 6, 7\}$	$\{4, 6, 8\}$	$\{4, 7, 8\}$	$\{5, 6, 7\}$	$\{5, 6, 8\}$	$\{5, 7, 8\}$	$\{6, 7, 8\}$	
	144	144	432	864	288	864	1728	2880	

Table 2. $vp_n(S)$ for $1 \leq n \leq 8$ with $VP_n(S) \neq \emptyset$.

References

- [1] H. Y. Chang, J. Ma, Y. N. Yeh, Enumerations of Permutations by Value-Descent Sets, preprint.
- [2] R. Cori, X. G. Viennot, A synthesis of bijections related to Catalan numbers, 1983, unpublished.
- [3] R. P. Stanley, Enumerative Combinatorics vol. 1, Cambridge University Press, Cambridge, 1997.