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Abstract

In this paper, we focus on a “local property” of permutations: value-peak. A
permutation σ has a value-peak σ(i) if σ(i − 1) < σ(i) > σ(i + 1) for some i ∈
[2, n − 1]. Define V P (σ) as the set of value-peaks of the permutation σ. For any
S ⊆ [3, n], define V Pn(S) such that V P (σ) = S. Let Pn = {S | V Pn(S) 6= ∅}. we
make the set Pn into a poset Pn by defining S � T if S ⊆ T as sets. We prove
that the poset Pn is a simplicial complex on the set [3, n] and study some of its
properties. We give enumerative formulae of permutations in the set V Pn(S).
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1 Introduction

Let [m, n] := {m, m + 1, · · · , n}. If m > n, then [m, n] = ∅. Let [n] := [1, n] and Sn

be the set of all the permutations on the set [n]. We write permutations of Sn in the
form σ = (σ(1)σ(2) · · ·σ(n)). Fix a permutation σ in Sn. For every i ∈ [n − 1], if
σ(i) > σ(i + 1), then we say that i is a position-descent of σ. Define the position-descent
set of a permutation σ, denoted by PD(σ), as PD(σ) = {i ∈ [n − 1] | σ(i) > σ(i + 1)}.
Given a set S ⊆ [n − 1], suppose PD(σ) = S for some σ ∈ Sn. We easily obtain the
increasing and decreasing intervals of σ from the set S. The permutation σ is a function
from the set [n] to itself. Since the monotonic property of a function is a global property
of the function, the position-descent set of a permutation gives a “global property” of the
permutation. We say a permutation σ ∈ Sn has a value-descent σ(i) if σ(i) > σ(i + 1)
for some i ∈ [n− 1]. Define the value-descent set of a permutation σ, denoted by V D(σ),
as V D(σ) = {σ(i) | σ(i) > σ(i + 1)}. The value-descent set of a permutation is different
from its position-descent set. Let S ⊆ [2, n]. Suppose V D(σ) = S for some σ ∈ Sn. We
only have that k is larger than its immediate right neighbour in the permutation σ for any
k ∈ S and do not obtain the increasing and decreasing intervals of σ from the set S. So
the value-descent set of a permutation gives a “local property” of the permutation. For
any S ⊆ [2, n], define a set V Dn(S) as V Dn(S) = {σ ∈ Sn | V D(σ) = S} and use vdn(S)
to denote the number of permutations in the set V Dn(S), i.e., vdn(S) = |V Dn(S)|. In a
joint work [1], Chang, Ma and Yeh derive an explicit formula for vdn(S).

In this paper, we are interested in another “local property” of permutations: value-
peak. A permutation σ has a value-peak σ(i) if σ(i − 1) < σ(i) > σ(i + 1) for some
i ∈ [2, n−1]. Define V P (σ) as the set of value-peaks of σ, i.e., V P (σ) = {σ(i) | σ(i−1) <
σ(i) > σ(i + 1)}. For example, the value-peak set of σ = (48362517) is {5, 6, 8}. Since σ
has no value-peaks when n 6 2, we may always suppose that n > 3. For any S ⊆ [n],
define a set V Pn(S) as V Pn(S) = {σ ∈ Sn | V P (σ) = S}. Obviously, if {1, 2, } ∩ S 6= ∅
then V Pn(S) = ∅.
Example 1.1

V P5({4, 5}) = { 14253, 14352, 24153, 34152, 24351, 34251,

15243, 15342, 25143, 35142, 25341, 35241 }.
Suppose S = {i1, i2, · · · , ik}, where i1 < i2 < · · · < ik. We prove the necessary and
sufficient conditions for V Pn(S) 6= ∅ are ij > 2j + 1 for all j ∈ [k]. Let Pn = {S |
V Pn(S) 6= ∅}. We make the set Pn into a poset Pn by defining S � T if S ⊆ T as sets.
Fig. 1 shows the Hasse diagrams of P3, P4 and P5

{3} {4}{3} {3}
{5} {4}

{3}

{3,5} {4,5}

fff

Fig.1. the Hasse diagrams of P3, P4 and P5.
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In the next section we prove that Pn is a simplicial complex on the vertex set [3, n] and
derive some properties of Pn.

Then we turn to enumerative problems for permutations by value-peak set. Let vpn(S)
denote the number of permutations in the set V Pn(S), i.e., vpn(S) = |V Pn(S)|. For the
cases with |S| = 0, 1, 2, we derive explicit formulae for vpn(S). For general n > 3, we
derive the following recurrence relation. Let n > 3 and S ⊆ [3, n]. Suppose V Pn(S) 6= ∅
and let r = max S if S 6= ∅, 1 otherwise. For any 0 6 k 6 n − r − 1, we have

vpn(S∪ [n−k+1, n]) = 2(k+1)vpn−1(S∪ [n−k, n−1])+k(k+1)vpn−2(S∪ [n−k, n−2]).

For any S ⊆ [3, n], we write the set S in the form S =
m
⋃

i=1

[ri − ki + 1, ri] such that

ri 6 ri+1−ki+1−1 for all i ∈ [m−1]. For example, let n = 12 and S = {3, 4, 8, 10, 11, 12}.
Then S = [3, 4]∪ [8, 8]∪ [10, 12]. We have r1 = 4, k1 = 2, r2 = 8, k2 = 1, r3 = 12, k3 = 3.
Define the type of the set S, denoted type(S), as (rk1

1 , rk2

2 , . . . , rkm
m ). We conclude with a

formula for the number of permutations in terms of the type of S.
The paper is organised as follows. In Section 2, we give the necessary and sufficient

conditions for V Pn(S) 6= ∅. We prove the poset Pn is a simplicial complex on the set
[3, n] and study its some properties. In Section 3, we investigate enumerative problems of
permutations in the sets V Pn(S). In the Appendix, we list vpn(S) for 1 6 n 6 8 obtained
by computer searches.

2 The Simplicial Complex Pn

In this section, we give the necessary and sufficient conditions for V Pn(S) 6= ∅ for any
n > 3 and S ⊆ [n]. We show Pn is a simplicial complex on the set [3, n] and study some
properties of Pn.

Theorem 2.1 Let n > 3. Suppose S = {i1, i2, · · · , ik} is a subset of [n], where i1 < i2 <
· · · < ik. Then the necessary and sufficient conditions for V Pn(S) 6= ∅ are ij > 2j + 1 for
all j ∈ [k].

Proof. Suppose V Pn(S) 6= ∅ and let σ ∈ V Pn(S). For any j ∈ [k], all the integers
i1, i2, · · · , ij are a value-peak of σ. Then ij − j > j + 1, hence, ij > 2j + 1.

Conversely, suppose ij > 2j + 1 for all j ∈ [k]. Suppose [n] \ S = {a1, a2, · · · , an−k}
with a1 < a2 < · · · < an−k. Let σ be the permutation in Sn defined by







σ(2j) = ij for 1 6 j 6 k,
σ(2j − 1) = aj for 1 6 j 6 k + 1,
σ(j) = aj for 2k + 2 6 j 6 n.

Obviously, V P (σ) = S and V Pn(S) 6= ∅.

Corollary 2.1 Let n > 3 and S ⊆ [n]. Suppose V Pn(S) 6= ∅. We have |S| 6 ⌊n−1
2
⌋.
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Proof. Suppose S = {i1, i2, · · · , ik} with i1 < i2 < · · · < ik. Since V Pn(S) 6= ∅, Theorem
2.1 tells us that n > ik > 2k + 1. Hence k 6 ⌊n−1

2
⌋.

Corollary 2.2 Let n > 3 and S ⊆ [n]. Suppose V Pn(S) 6= ∅. Then for |S| < ⌊n−1
2
⌋, we

have V Pn+1(S ∪ {n + 1}) 6= ∅; for |S| = ⌊n−1
2
⌋, we have V Pn+1(S ∪ {n + 1}) 6= ∅ if n is

even; otherwise, V Pn+1(S ∪ {n + 1}) = ∅.

Proof. Let k = |S|. k < ⌊n−1
2
⌋ implies 2(k + 1) + 1 6 2⌊n−1

2
⌋ + 1 < n + 1. So,

V Pn+1(S ∪ {n + 1}) 6= ∅ when |S| < ⌊n−1
2
⌋. For the case with k = ⌊n−1

2
⌋, we have

2(k + 1) + 1 =

{

n + 1 if n is even,
n + 2 if n is odd.

By Theorem 2.1, V Pn+1(S ∪{n+1}) 6= ∅ if n is even; otherwise, V Pn+1(S ∪{n+1}) = ∅.

Following [3], define a simplicial complex ∆ on a vertex set V as a collection of subsets
of V satisfying:
(1) If x ∈ V , then {x} ∈ ∆, and
(2) if S ∈ ∆ and T ⊆ S, then T ∈ ∆.

Theorem 2.2 Let n > 3. Then Pn is a simplicial complex on the set [3, n].

Proof. Obviously, ∅ ∈ Pn. For any 3 6 x 6 n, Theorem 2.1 implies {x} ∈ Pn. Let T
be a subset of [n] such that V Pn(T ) = ∅. Note that V Pn(S) = ∅ for any T ⊆ S. Thus
given an S ∈ Pn, we have T ∈ Pn for all T ⊆ S. Hence, Pn is a simplicial complex on
the set [3, n].

If P and Q are posets, then the direct product of P and Q is the poset P × Q on the
set {(x, y) | x ∈ P and y ∈ Q} such that (x, y) 6 (x′, y′) in P × Q if x 6 x′ in P and
y 6 y′ in Q. Recall that the poset n is formed by the set [n] with its usual order. By
Corollary 2.2, we obtain a method to construct the poset Pn+1 from Pn.

Theorem 2.3 Pn+1
∼= 2 × Pn if n is even; Pn+1

∼= (2 × Pn) \ ({1} × Pn,⌊n−1

2
⌋−1) if n

is odd.

Now, we derive some properties of the simplicial complex Pn. By Theorem 2.3, it is
easy to obtain the Möbius function of the poset Pn.

Corollary 2.3 Let µn = µPn
be the Möbius function of the poset Pn. Then µn(S, T ) =

(−1)|T |−|S| for any S � T in Pn.

Proof. Obviously, µ3(∅, {3}) = −1. By induction for n, we assume µn(S, T ) = (−1)|T |−|S|

for any S � T in Pn. By Theorem 2.3, it follows that

µn+1(S, T ) =







µn(S \ {n + 1}, T \ {n + 1}) if n + 1 ∈ S ∩ T,
µn(S, T ) if n + 1 /∈ S ∪ T,
−µn(S, T \ {n + 1}) if n + 1 /∈ S and n + 1 ∈ T
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for any S ≺ T . Simple computations show that µn+1(S, T ) = (−1)|T |−|S|.
For every S ∈ Pn, we call the element S a face of Pn and the dimension of S is

defined to be |S| − 1, denoted dim(S). In particular, the void set ∅ is always a face of
Pn of dimension −1, i.e., dim(∅) = −1. Also define the dimension of Pn by dim(Pn) =
max
S∈Pn

(dim(S)).

Theorem 2.4 dim(Pn) = ⌊n−1
2
⌋ − 1.

Proof. Taking S = {3, 5, · · · , 2⌊n−1
2
⌋ + 1}, by Theorem 2.1, we have S ∈ Pn. From

Corollary 2.1 it follows that the dimension of Pn is ⌊n−1
2
⌋ − 1.

Define Pn,i as the set of all the faces of dimension i in Pn, i.e., Pn,i = {S ∈
Pn | |S| = i + 1} for any −1 6 i 6 ⌊n−1

2
⌋ − 1. Let pn,i = |Pn,i|. The sequence

(pn,−1, pn,0, . . . , pn,⌊ 1

2
(n−1)⌋−1) is called the f -vector of the simplicial complex Pn. Define

the f -polynomial of Pn as Pn(x) =
⌊ 1

2
(n−1)⌋
∑

i=0

pn,i−1x
⌊ 1

2
(n−1)⌋−i.

To study the f -vector of Pn, we introduce the concept of left factors of Dyck path.
An n-Dyck path is a lattice path in the first quadrant starting at (0, 0) and ending at
(2n, 0) with only two kinds of steps—rise step: U = (1, 1) and fall step: D = (1,−1).
We can also consider an n-Dyck path P as a word of 2n letters using only U and D. Let
L = w1w2 · · ·wn be a word, where wj ∈ {U, D} and n > 0. If there is another word R
which consists of U and D such that LR forms a Dyck path, then L is called an n-left
factor of Dyck paths. Let Ln denote the set of all n-left factors of Dyck paths. For any
i > 0, let Ln,i denote the set of all n-left factors of Dyck paths from (0, 0) to (n, n − 2i).
It is well known that |Ln|, the cardinality of Ln, equals the nth central binomial number
bn =

(

n
⌊n

2
⌋
)

and |Ln,i| = n−2i+1
i

(

n
i−1

)

(see Cori and Viennot [2]).

In the following lemma, we give a bijection φ from the set Pn to the set Ln−1.

Lemma 2.1 There is a bijection φ between the set Pn and the set Ln−1 for any n > 3.
Furthermore, the number of elements in Pn is

(

n−1
⌊n−1

2
⌋
)

.

Proof. For any S ∈ Pn, we construct a word φ(S) = w1w2 · · ·wn−1 as follows:

wi =

{

D if i + 1 ∈ S
U if i + 1 /∈ S

for any i ∈ [n − 1]. Theorem 2.1 implies φ(S) is an (n − 1)-left factor of a Dyck path.
Conversely, for any an n-left factor w1w2 · · ·wn−1 of a Dyck path, let S = {i+1 | wi = D}.
Then V Pn(S) 6= ∅. Thus the mapping φ is a bijection. Note that the number of (n−1)-left
factors of Dyck paths is

(

n−1
⌊n−1

2
⌋
)

. Hence, |Pn| =
(

n−1
⌊n−1

2
⌋
)

.

Corollary 2.4 Let n > 3. There is a bijection between the set Pn,i and the set Ln−1,i+1

for any −1 6 i 6 ⌊n−1
2
⌋ − 1. Furthermore, we have

pn,i =

{

1 if i = −1,
n−2i−2

i+1

(

n−1
i

)

if 0 6 i 6 ⌊n−1
2
⌋ − 1.
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Proof. We just consider the case with i > 0. For any S ∈ Pn,i, since |S| = i + 1, the
number of the letter D in the word φ(S) is i + 1. Hence, φ(S) is a left factor of a Dyck
path from (0, 0) to (n − 1, n − 2i − 3). So, φ(S) ∈ Ln−1,i+1. Hence, pn,i = |Ln−1,i+1| =
n−2i−2

i+1

(

n−1
i

)

.

Corollary 2.5 Let n > 3. The sequence (pn,−1, pn,0, . . . , pn,⌊ 1

2
(n−1)⌋−1) satisfies the follow-

ing recurrence relation: for any even integer n,

pn+1,i =







pn,i if i = −1,
pn,i−1 + pn,i if i = 0, 1, · · · , n

2
− 2,

pn,i−1 if i = n
2
− 1;

for any odd integer n,

pn+1,i =

{

pn,i if i = −1,
pn,i−1 + pn,i if i = 0, 1, · · · , n−3

2
,

with initial conditions (p3,−1, p3,0) = (1, 1).

Proof. First, we consider the case of an even integer n . It is easy to see pn+1,−1 =
pn,−1 = 1.

For any S ∈ Pn+1, 1
2
n−1, Corollary 2.2 tells us n + 1 ∈ S. Note that S ∈ Pn+1, 1

2
n−1 if

and only if S \ {n + 1} ∈ Pn, 1
2
n−2. Hence, pn+1, 1

2
n−1 = pn, 1

2
n−2.

For every i ∈ {0, 1, . . . , 1
2
n − 2}, it is easy to see Pn,i ⊆ Pn+1,i. For any S ∈ Pn+1,i

with n + 1 ∈ S, S \ {n + 1} can be viewed as an element of Pn,i−1. Conversely, for any
S ∈ Pn,i−1, Corollary 2.2 implies S ∪ {n + 1} ∈ Pn+1,i. Hence, pn+1,i = pn,i−1 + pn,i.

Similarly, we can consider the case of an odd integer n.

Theorem 2.5 Let n > 3.

(1) The f -polynomial Pn(x) of the simplicial complex Pn satisfies the following recur-
rence relation:

xε(n)
Pn+1(x) = (1 + x)Pn(x) − ε(n)

2

n + 1

(

n − 1
n−1

2

)

for any n, where ε(n) = 0 if n is even; ε(n) = 1 otherwise, with initial condition
P3(x) = x + 1.

(2) Let P(x, y) =
∑

n>3

Pn(x)yn. Then P(x, y) =

[

(1 + y + xy)[1 + x − C(y2)]

x − (x + 1)2y2
− 1

]

y2,

where C(y) = 1−√
1−4y

2y
.
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Proof. (1) Obviously, P3(x) = x + 1. Given an odd integer n, we suppose n = 2i + 1
with i > 1. Corollary 2.5 implies xP2i+2(x) = (1 + x)P2i+1(x) − 1

(i+1)

(

2i
i

)

. Similarly,
given an even integer n, we suppose n = 2i with i > 2. By Corollary 2.5, we have
P2i+1(x) = (1 + x)P2i(x).

(2) Let Podd(x, y) =
∑

i>1

P2i+1(x)y2i+1 and Peven(x, y) =
∑

i>2

P2i(x)y2i. We have

Podd(x, y) = (x + 1)y3 + (x + 1)yPeven(x, y) and P(x, y) = Podd(x, y) + Peven(x, y). It
is easy to check xP2i+3(x) = (1 + x)2P2i+1(x) − 1

i+1

(

2i
i

)

(x + 1). So, Podd(x, y) satisfies
the following equation

xPodd(x, y) = (x + 1)2y2
Podd(x, y) + (x + 1)y3[1 + x − C(y2)],

where C(y) = 1−√
1−4y

2y
. Equivalently, Podd(x, y) =

(x + 1)y3[1 + x − C(y2)]

x − (x + 1)2y2
. Hence

P(x, y) =

[

(1 + y + xy)[1 + x − C(y2)]

x − (x + 1)2y2
− 1

]

y2.

Let Hn(x) = Pn(x−1) =
⌊ 1

2
(n−1)⌋
∑

i=0

hn,ix
⌊ 1

2
(n−1)⌋−i. The polynomial Hn(x) and the sequence

(hn,0,hn,1,· · · ,
hn,⌊ 1

2
(n−1)⌋) are called the h-polynomial and the h-vector of Pn respectively.

Corollary 2.6 Let n > 3.

(1) The h-polynomial Hn(x) of the simplicial complex Pn satisfies the recurrence relation:

(x − 1)ε(n)
Hn+1(x) = xHn(x) − ε(n)

2

(n + 1)

(

n − 1
n−1

2

)

for any n, where ε(n) = 0 if n is even; ε(n) = 1 otherwise, with initial condition
H3(x) = x.

(2) Let H (x, y) =
∑

n>3

Hn(x)yn. We have H (x, y) =

[

(1 + xy)[x − C(y2)]

x − 1 − x2y2
− 1

]

y2.

Proof. (1) Since Hn(x) = Pn(x − 1), by Theorem 2.5, we easily obtain Hn+1(x) =
xHn(x) if n is even, and (x − 1)Hn+1(x) = xHn(x) − 2

n+1

(

n−1
n−1

2

)

if n is odd, with initial

condition H3(x) = x.

(2) Since H (x, y) = P(x − 1, y), we have H (x, y) =

[

(1 + xy)[x − C(y2)]

x − 1 − x2y2
− 1

]

y2.

Corollary 2.7 Let the sequence (hn,0, hn,1, · · · , hn,⌊ 1

2
(n−1)⌋) be the h-vector of Pn. Then

hn,i satisfies the following recurrence relation:

hn+1,i =







hn,0 if i = 0,
hn,i + ε(n)hn+1,i−1 if 1 6 i 6 ⌊n

2
⌋ − 1,

ε(n)c⌊n
2
⌋ if i = ⌊n

2
⌋,
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where cm = 1
m+1

(

2m
m

)

and ε(n) = 0 if n is even; otherwise, ε(n) = 1, with initial conditions
(h3,0, h3,1) = (1, 0). Equivalently,

hn,i =
⌊n

2
⌋ − i

⌊n
2
⌋ + i

(⌊n
2
⌋ + i

⌊n
2
⌋

)

.

Proof. The recurrence relations are obtained by comparing coefficients on both sides of

the identity in 2.6 (1). Consider tn,i =
⌊n

2
⌋−i

⌊n
2
⌋+i

(⌊n
2
⌋+i

⌊n
2
⌋

)

. Note that tn,i and hn,i satisfy the

same recurrence relations and (t3,0, t3,1) = (1, 0). Hence,

hn,i = tn,i =
⌊n

2
⌋ − i

⌊n
2
⌋ + i

(⌊n
2
⌋ + i

⌊n
2
⌋

)

.

Remark 2.1 Let n > 3. The number of left factors of the Dyck path from (0, 0) to

(⌊n
2
⌋ + i − 1, ⌊n

2
⌋ − i − 1) equals

⌊n
2
⌋−i

⌊n
2
⌋+i

(⌊n
2
⌋+i

⌊n
2
⌋

)

for any 0 6 i 6 ⌊n−1
2
⌋.

Define the reduced Euler characteristic of Pn by χ̃(Pn) =
⌊ 1

2
(n−1)⌋
∑

i=0

(−1)i−1pn,i−1.

Corollary 2.8 For any n > 3, χ̃(Pn) =

{

0 if n is odd,
2(−1)

n
2

n

(

n−2
1

2
(n−2)

)

if n is even.

Proof. Clearly, P3(−1) = 0. Theorem 2.5 tells us

Pn+1(−1) =

{

0 if n is even,
2

n+1

(

n−1
1

2
(n−1)

)

if n is odd

for any n > 4. Since χ̃(Pn) = (−1)⌊
n−1

2
⌋−1

Pn(−1), we have

χ̃(Pn) =

{

0 if n is odd,
2(−1)

n
2
−2

n

(

n−2
1

2
(n−2)

)

if n is even.

Let P be a finite post. Define Z(P, i) to be the number of multichains x1 6 x2 6 · · · 6

xi−1 in P for any i > 2. Z(P, i) is called the zeta polynomial of P . We state Proposition
3.11.1a and Proposition 3.14.2 in [3] as the following lemma.

Lemma 2.2 [3] Suppose P is a poset.

(1) Let di be the number of chains x1 < x2 < · · · < xi−1 in P . Then Z(P, i) =
∑

j>2

dj

(

i−2
j−2

)

.
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(2) If P is simplicial and graded, then Z(P, x + 1) is the rank-generating function of P .

Corollary 2.9 Let n > 3 and i > 2. Then

(1) Z(Pn, i) = (i − 1)⌊
n−1

2
⌋Pn( 1

i−1
) for any i > 2,

(2) Z(Pn, i) satisfies the recurrence relations:

Z(Pn+1, i) = iZ(Pn, i) − ε(n)
2(i − 1)

1

2
(n+1)

n + 1

(

n − 1
1
2
(n − 1)

)

,

where ε(n) = 0 if n is even; ε(n) = 1 otherwise, with initial condition Z(P3, i) = i.

(3) Let Z(x, y) =
∑

n>3

Z(Pn, x)yn. We have

Z(x, y) =

[

(1 + xy)[x − (x − 1)C(y2(x − 1))]

1 − x2y2
− 1

]

y2.

Proof. (1) Let Pn(x) be the f -polynomial of Pn. We have the rank-generating function

of Pn is x⌊ 1

2
(n−1)⌋

Pn( 1
x
). Lemma 2.2(2) implies that Z(Pn, i) = (i − 1)⌊

n−1

2
⌋
Pn(

1
i−1

).
(2) The recurrence relations for Z(Pn, i) follow from Theorem 2.5.

(3) Note that Z(Pn, x + 1) = x⌊n−1

2
⌋
Pn( 1

x
) = (

√
x)n−2+ε(n)Pn( 1

x
). By the proof of

Theorem 2.5, we have Podd(x, y) = (x+1)y3[1+x−C(y2)]
x−(x+1)2y2 and Peven(x, y) = Podd(x,y)−(x+1)y3

(x+1)y
.

Then

Z(x + 1, y) =
∑

n>3

(
√

x)n−2+ε(n)
Pn(

1

x
)yn

=
1

x
Peven(

1

x
, y
√

x) +
1√
x
Podd(

1

x
, y
√

x)

=

[

(1 + y + xy)[1 + x − xC(y2x)]

1 − (x + 1)2y2
− 1

]

y2.

Let dPn,i be the number of chains Sn,1 ≺ Sn,2 ≺ · · · ≺ Sn,i of Pn.

Theorem 2.6 For any i > 1,

dPn,i =
∑

(

n

d1, d2, · · · , di+1

)

2di+1 − n

n
,

where the sum is over all (d1, · · · , di+1) such that
i+1
∑

k=1

dk = n, d1 > 0, dk > 1 for all

2 6 k 6 i and di+1 > n − ⌊n−1
2
⌋.
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Proof. Let i > 1 and Sn,1 ≺ Sn,2 ≺ · · · ≺ Sn,i be a chain of Pn. Suppose |Sn,k| = jk for
any k ∈ [i]. Then 0 6 j1 < j2 < · · · < ji 6 ⌊n−1

2
⌋. There are pn,ji−1 ways to obtain the

set Sn,i. Given Sn,k with k > 2, there are
(

jk

jk−1

)

ways to form the subset Sn,k−1 ⊆ Sn,k.

Hence,

dPn,i =
∑

0=j06j1<j2<···<ji6⌊n−1

2
⌋

i−1
∏

k=0

(

jk+1

jk

)

pn,ji−1

=
∑

(

n

d1, d2, · · · , di+1

)

2di+1 − n

n
,

where the sum is over all (d1, · · · , di+1) such that
i+1
∑

k=1

dk = n, d1 > 0, dk > 1 for all

2 6 k 6 i and di+1 > n − ⌊n−1
2
⌋.

Corollary 2.10 For any n > 3,

Pn(x) =

⌊n−1

2
⌋+2

∑

i=2

x⌊n−1

2
⌋+2−i

(i − 2)!

i−2
∏

j=1

(1 − jx)
∑

(

n

d1, d2, · · · , di

)

2di − n

n

where the second sum is over all (d1, · · · , di) such that
i

∑

k=1

dk = n, d1 > 0, dk > 1 for all

2 6 k 6 i − 1 and di > n − ⌊n−1
2
⌋.

Proof. Lemma 2.2(1) implies Z(Pn, i) =
⌊n−1

2
⌋+2

∑

j=2

dPn,j−1

(

i−2
j−2

)

. By Corollary 2.9, we have

Pn

(

1

i − 1

)

=

(

1

i − 1

)⌊n−1

2
⌋ ⌊n−1

2
⌋+2

∑

j=2

dPn,j−1

(

i − 2

j − 2

)

for any i > 2. Note that

x⌊n−1

2
⌋
⌊n−1

2
⌋+2

∑

j=2

dPn,j−1

(

1
x
− 1

j − 2

)

=

⌊n−1

2
⌋+2

∑

j=2

x⌊n−1

2
⌋+2−j

(j − 2)!

j−2
∏

k=1

(1 − kx)dPn,j−1

is a polynomial. Hence, Pn(x) =
⌊n−1

2
⌋+2

∑

j=2

x⌊n−1
2

⌋+2−j

(j−2)!

j−2
∏

k=1

(1 − kx)dPn,j−1.

3 Enumerations for Permutations in the Set V Pn(S)

In this section, we will consider enumerative problems of permutations in the set V Pn(S).
Let vpn(S) denote the number of permutations in the set V Pn(S), i.e., vpn(S) = |V Pn(S)|.
First, we need the following lemma.
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Lemma 3.1 Let n > 3 and S ⊆ [n]. Suppose V Pn(S) 6= ∅. Then

(1) vpn+1(S) = 2vpn(S), and

(2) let m = maxS. We have vpn(S) = 2n−mvpm(S) for any n > m.

Proof. (1) It is easy to see ((n+1)σ(1) · · ·σ(n)) ∈ V Pn+1(S) and (σ(1) · · ·σ(n)(n+1)) ∈
V Pn+1(S) for any σ = (σ(1) · · ·σ(n)) ∈ V Pn(S). Conversely, for any σ ∈ V Pn+1(S), the
position of the integer n + 1 is 1 or n + 1, i.e., σ−1(n + 1) = 1 or n + 1, since n + 1 /∈ S.
Hence, vpn+1(S) = 2vpn(S).

(2) Iterating the identity of Lemma 3.1(1), we obtain vpn(S) = 2n−mvpm(S).
For any σ ∈ Sn, let τ be a subsequence (σ(j1)σ(j2) · · ·σ(jk)) of (σ(1) · · ·σ(n)), where

1 6 j1 < j2 < · · · < jk 6 n. Define φσ,τ as an increasing bijection of {σ(ji) | 1 6 i 6 k}
onto [k]. Let φσ(τ) = (φσ,τ (σ(j1))φσ,τ (σ(j2)) · · ·φσ,τ (σ(jk))). For the cases with |S| =
0, 1, 2, in the following theorem, we derive the explicit formulae for vpn(S)

Theorem 3.1 Let n > 3. Then

(1) vpn(∅) = 2n−1,

(2) vpn({i}) = 2n−2(2i−2 − 1) for any i ∈ [3, n], and

(3) vpn({i, j}) = 2n−3(2i−2−1)(2j−i−1−1)+2n+j−i−5 ·3(3i−2−2i−1+1) for any i, j ∈ [3, n]
and i < j.

Proof. (1) For any σ ∈ Sn, suppose the position of the integer 1 is i+1, i.e., σ−1(1) = i+1.
Then σ ∈ V Pn(∅) if and only if σ satisfies σ(1) > · · · > σ(i + 1) < · · · < σ(n). For each
integer j 6= 1, the position of j has two possibilities at the left or right of the integer 1.
Hence, vpn(∅) = 2n−1.

(2) By Lemma 3.1(2), we first consider the number of permutations in the set V Pi({i}),
where i > 3. For any σ ∈ V Pi({i}), suppose the position of the integer i is k + 1,
i.e., σ−1(i) = k + 1. Then 1 6 k 6 i − 2, φσ(σ(1) · · ·σ(k)) ∈ V Pk(∅) and φσ(σ(k +
2) · · ·σ(i)) ∈ V Pi−k−1(∅). There are

(

i−1
k

)

ways to form the set {σ(1), · · · , σ(k)}. So,

vpi({i}) =
i−2
∑

k=1

(

i−1
k

)

2k−12i−k−2 = 2i−2(2i−2 − 1). Hence, vpn({i}) = 2n−2(2i−2 − 1).

(3) It is easy to see the identity holds for i = 3 and j = 4. By Lemma 3.1(2), we first
consider the number of permutations in the set V Pj({i, j}), where 3 6 i < j. We begin
from the case σ ∈ V Pj({i, j}) with σ−1(i) < σ−1(j). Let

T1(σ) = {σ(k) | σ(k) < i and k < σ−1(i)},
T2(σ) = {σ(k) | σ(k) < i and σ−1(i) < k < σ−1(j)},
T3(σ) = {σ(k) | σ(k) < i and k > σ−1(j)}.

Note that Tk(σ) 6= ∅ for k = 1, 2 since σ has a value-peak i and
3
⋃

k=1

Tk(σ) = [i − 1]. Let

T4(σ) = {σ(k) | i < σ(k) < j and k < σ−1(i)}
T5(σ) = {σ(k) | i < σ(k) < j and σ−1(i) < k < σ−1(j)}.
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We discuss the following two subcases.
Subcase 1. T3(σ) = ∅.
Let T6(σ) = {σ(k) | i < σ(k) < j, k > σ−1(j)}. Then T6(σ) 6= ∅ since σ must have a

value-peak j and
6
⋃

k=4

Tk(σ) = [i + 1, j − 1]. For k = 1, 2, 6, the subsequences of σ, that

are determined by elements from Tk(σ), correspond to a permutation in V P|Tk(σ)|(∅). The
subsequences of σ, that are determined by elements from T4(σ) and T5(σ), are decreasing
and increasing, respectively. So, the number of permutations under this subcase is

∑

(T1,T2)

(

i − 1

|T1|, |T2|

)

2|T1|−12|T2|−1
∑

(T4,T5,T6)

(

j − i − 1

|T4|, |T5|, |T6|

)

2|T6|−1 = 2j−4(2i−2 − 1)(2j−i−1 − 1),

where the first sum is over all pairs (T1, T2) such that Ti 6= ∅ for i = 1, 2 and T1∪T2 = [i−1];
the second sum is over all triples (T4, T5, T6) such that T6 6= ∅ and T4∪T5∪T6 = [i+1, j−1].

Subcase 2. T3(σ) 6= ∅.
Suppose min T3(σ) = s. Let

T6(σ) = {σ(k) | i < σ(k) < j and σ−1(j) < k < σ−1(s)},
T7(σ) = {σ(k) | i < σ(k) < j and k > σ−1(s)}.

Then, for k = 1, 2, 3, the subsequences of σ, that are determined by elements from Tk(σ),
correspond to a permutation in V P|Tk(σ)|(∅). The subsequences of σ, that are determined
by elements from T4(σ) and T6(σ), are decreasing. The subsequences of σ, that are deter-
mined by elements from T5(σ) and T7(σ), are increasing. So, the number of permutations
under this subcase is

∑

(T1,T2,T3)

(

i − 1

|T1|, |T2|, |T3|

)

2|T1|−12|T2|−12|T3|−14j−i−1 = 22j−i−6 · 3(3i−2 − 2i−1 + 1),

where the sum is over all triples (T1, T2, T3) such that Ti 6= ∅ for i = 1, 2, 3 and T1∪T2∪T3 =
[i − 1].

Similarly, we may consider the case σ ∈ V Pj({i, j}) with σ−1(i) > σ−1(j). Therefore,
vpj({i, j}) = 2[2j−4(2i−2 − 1)(2j−i−1 − 1) + 22j−i−6 · 3(3i−2 − 2i−1 + 1)]. In general, for any
n > 3 and 3 6 i < j 6 n,

vpn({i, j}) = 2n−3(2i−2 − 1)(2j−i−1 − 1) + 2n+j−i−5 · 3(3i−2 − 2i−1 + 1).

In the following lemma, we give a recurrence relation for vpn(S).

Lemma 3.2 Let n > 3 and S ⊆ [n − 1]. Then

vpn(S ∪ {n}) = [n − 2 − 2|S|]vpn−1(S) +
∑

j /∈S,j<n

2vpn−1(S ∪ {j}).
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Proof. Suppose σ ∈ V Pn−1(S). We want to form a new permutation τ ∈ V Pn(S ∪ {n})
by inserting the integer n into σ. For any j ∈ S, since the integer j is a value-peak in
the new permutation, we can not insert n into σ beside j. But the integer n must be a
value-peak. So, there are (n − 2 − 2|S|) ways to form a new permutation τ from σ such
that τ ∈ V Pn(S ∪ {n}).

For any j /∈ S with j < n and σ ∈ V Pn−1(S ∪ {j}), we must insert n into σ beside
j such that n becomes a value-peak. So, there are 2 ways to form a new permutation τ
from σ such that τ ∈ V Pn(S ∪ {n}).

Hence, vpn(S ∪ {n}) = [n − 2 − 2|S|]vpn−1(S) +
∑

j /∈S,j<n

2 · vpn−1(S ∪ {j}).

For any S ∈ [n], suppose S = {i1, i2, . . . , ik}. Let xS stand for the monomial
xi1xi2 · · ·xik ; In particular, let x∅ = 1. Given n > 3, we define a generating function
as follows

gn(x1, x2, . . . , xn; y) =
∑

σ∈Sn

xV P (σ)y
|V P (σ)|.

We also write gn(x1, x2, . . . , xn; y) as gn for short. By the recurrence relation as above, we
obtain the following result for the generating function gn.

Corollary 3.1 Let n > 3 and gn =
∑

σ∈Sn

xV P (σ)y
|V P (σ)|. Then gn satisfies the following

recursion:

gn+1 = [2 + (n − 1)xn+1y]gn + 2xn+1

n
∑

i=1

∂gn

∂xi
− 2xn+1y

2∂gn

∂y
.

for all n > 3 with initial condition g3 = 4+2x3y, where the notation “∂gn

∂y
” denotes partial

differentiation of gn with respect to y.

Proof. Obviously, g3 = 4 + 2x3y and
∑

σ∈Sn

xV P (σ)y
|V P (σ)| =

∑

S⊆[2,n]

vpn(S)xSy|S|. Hence,

gn+1 =
∑

S⊆[n+1]

vpn+1(S)xSy|S|

=
∑

S⊆[n+1],n+1∈S

vpn+1(S)xSy|S| +
∑

S⊆[n+1],n+1/∈S

vpn+1(S)xSy|S|

=
∑

S⊆[n]



(n − 1 − 2|S|)vpn(S) +
∑

i∈[n]\S
2vpn(S ∪ {i})



xSxn+1y
|S|+1 + 2gn

= 2
∑

S⊆[n]

∑

i∈[n]\S
vpn(S ∪ {i})xSxn+1y

|S|+1 − 2
∑

S⊆[n]

|S|vpn(S)xSxn+1y
|S|+1

+[2 + (n − 1)xn+1y]gn.

Note that

∂gn

∂y
=

∑

S⊆[n]

|S|vpn(S)xSy|S|−1
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and

∑

S⊆[n]

∑

i∈[n]\S
vpn(S ∪ {i})xSxn+1y

|S|+1

=
∑

S⊆[n],S 6=∅
vpn(S)xn+1y

|S|
∑

i∈S

xS

xi

= xn+1

n
∑

i=1

∂gn

∂xi

.

Therefore, gn+1 = [2 + (n − 1)xn+1y]gn + 2xn+1

n
∑

i=1

∂gn

∂xi
− 2xn+1y

2 ∂gn

∂y
.

By computer search, we obtain vpn(S) for all 3 6 n 6 8 and S ⊆ [3, n] and list them
in Appendix. In Table 1., we give the generating functions gn for 3 6 n 6 5.

The generating function gn for 3 6 n 6 5
g3 = 4 + 2x3y
g4 = 8 + 4x3y + 12x4y
g5 = 16 + 8x3y + 24x4y + 56x5y + 4x3x5y

2 + 12x4x5y
2

Table 1. The generating function gn for 3 6 n 6 5.

Corollary 3.2 Let n > 3 and S ⊆ [3, n].

(1) Suppose S = {i1, . . . , ik}, where i1 < i2 < . . . < ik. If there exists j ∈ [k] such that
ij = 2j +1, then vpn(S ∪{n}) = [n−2−2|S|]vpn−1(S)+

∑

i/∈S,2j+2<i<n

2vpn−1(S ∪{i}).

(2) vpn({3, 5, . . . , 2k + 1}) = 2n−k−1 for all k ∈ [⌊n−1
2
⌋].

Proof. (1) By Theorem 2.1, V Pn(S∪ i) = ∅ for any i /∈ S and i < 2j +1 since ij = 2j +1.
We immediately obtain the results as desired.

(2) By induction on k. For k̄ = 1, by Theorem 3.1(2), we have vpn({3}) = 2n−2.
Suppose the identity holds for any k̄ = k. For k̄ = k +1, by Lemma 3.2 and the induction
hypothesis, vp2k+3({3, 5, . . . , 2k+3}) = vp2k+2({3, 5, . . . , 2k+1}) = 2vp2k+1({3, 5, . . . , 2k+
1}) = 2 · 2k = 2k+1. Hence vpn({3, 5, . . . , 2k + 3}) = 2n−2k−3 · 2k+1 = 2n−k−2.

Now, we give another recurrence relation for vpn(S).

Lemma 3.3 Let n > 3 and S ⊆ [3, n]. Suppose V Pn(S) 6= ∅ and let r = maxS if S 6= ∅,
1 otherwise. For any 0 6 k 6 n − r − 1, we have

vpn(S∪ [n−k+1, n]) = 2(k+1)vpn−1(S∪ [n−k, n−1])+k(k+1)vpn−2(S∪ [n−k, n−2]).

Proof. For any σ ∈ V Pn(S ∪ [n − k + 1, n]), we consider the following four cases.
Case 1. There are no integers i ∈ [n−k+1, n] such that the position of i is beside n−k

in σ, i.e., |σ−1(i) − σ−1(n − k)| = 1. Then σ−1(n − k) = 1 or n since the permutation σ
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has not a value-peak n− k. We obtain a new permutation τ by exchanging the positions
of n − k and n in σ. Clearly, τ ∈ V Pn(S ∪ [n − k, n − 1]). Lemma 3.1 (1) tells us
vpn(S ∪ [n − k, n − 1]) = 2vpn−1(S ∪ [n − k, n − 1]). Hence, the number of permutations
under this case is 2 · vpn−1(S ∪ [n − k, n − 1]).

Case 2. There are exactly two integers j, m ∈ [n−k+1, n] such that |σ−1(j)−σ−1(n−
k)| = 1 and |σ−1(m) − σ−1(n − k)| = 1. Deleting j and m, we obtain a subsequence τ of
σ . Then φσ(τ) ∈ V Pn−2(S ∪ [n − k, n − 2]). Note that there are k(k − 1) ways to form
the pairs (j, m). Hence, the number of permutations under this case is k(k− 1)vpn−2(S ∪
[n − k, n − 2]).

Case 3. There is exactly one integer j ∈ [n−k+1, n] such that |σ−1(j)−σ−1(n−k)| = 1.
Then there are k ways to form the set {j}. Let τ be the subsequence of σ obtained by
deleting j. There are the following two subcases.

Subcase 3.1. σ−1(n − k) 6= 1 and n. Then φσ(τ) ∈ V Pn−1(S ∪ [n − k, n − 1]). Hence,
the number of permutations under this subcase is k · vpn−1(S ∪ [n − k, n − 1]).

Subcase 3.2. σ−1(n − k) = 1 or n. Then φσ(τ) ∈ V Pn−2(S ∪ [n − k, n − 2]). Hence,
the number of permutations under this subcase is k · vpn−2(S ∪ [n − k, n − 2]).

So,

vpn(S ∪ [n − k + 1, n])

= 2vpn−1(S ∪ [n − k, n − 1]) + k(k − 1)vpn−2(S ∪ [n − k, n − 2])

+2k · vpn−1(S ∪ [n − k, n − 1]) + 2k · vpn−2(S ∪ [n − k, n − 2])

= 2(k + 1)vpn−1(S ∪ [n − k, n − 1]) + k(k + 1)vpn−2(S ∪ [n − k, n − 2]).

Now we associate the recurrence relation in Lemma 3.3 with a lattice path in the plane
Z×Z, where Z is the set of integers. In particular, let (n, k), (n− 1, k) and (n− 2, k− 1)
be three vertices in the plane Z × Z. We get a step (1, 0) (resp. (2,1)) by connecting the
vertex (n − 1, k) ( resp. (n − 2, k − 1)) to the vertex (n, k) and give this step a weight
2(k + 1) ( resp. k(k + 1)). Fig. 2 shows the resulting graph.

(n,k)

(n-2,k-1)

(n-1,k) 2(k+1)

k(k+1)

Fig. 2. the graph resulting from the recurrence relation.

Fixing a set S, let the weight of the vertex (n, k) be vpn(S ∪ [n − k + 1, n]). It is easy
to see we can obtain the recurrence relation for vpn(S) by Fig. 2. So we introduce the
concept of value-peak path in the plane Z × Z as follows.

A value-peak path is a lattice path in the first quadrant starting at (0, 0) and ending
at (n, k) with only two kinds of steps—horizon step H = (1, 0) and rise step R = (2, 1).
We also consider a value-peak path P from (0, 0) to (n, k) as a word of n−k letters using
only H and R. Let Pn,k be the set of all the value-peak paths from (0, 0) to (n, k). Let

the electronic journal of combinatorics 17 (2010), #R46 15



i be a nonegative integer and P = e1e2 · · · en−k ∈ Pn,k. For every j ∈ [n − k], define the
weight wi(ej) of the step ej as follows: if the step ej connects a vertex (x, y) to a vertex
(x + 1, y), then wi(ej) = 2i + 2(y + 1); if the step ej connects a vertex (x, y) to a vertex
(x + 2, y + 1), then wi(ej) = (y + i + 1)(y + i + 2). Furthermore, define the weight of the

value-peak path P , denoted wi(P ), as wi(P ) =
n−k
∏

j=1

wi(ej) and w(i; n, k) =
∑

P∈Pn,k

wi(P ).

For any i < 0, let w(i; n, k) = 0.

Example 3.1 Let n = 8, k = 3 and i = 0. We draw a value-peak path P = e1e2e3e4e5 =
HRRHR from (0, 0) to (8, 3) in Fig. 3. For every step ej in P , we give a label on the
step to denote the weight of ej , i.e., w0(e1) = 2, w0(e2) = 2, w0(e3) = 6, w0(e4) = 6,
w0(e5) = 12. Hence, w0(P ) = 1728.

(0,0)

(8,3)

2
2

6

6
12

Fig. 3. A value-peak path P with weights from (0, 0) to (8, 3).

Lemma 3.4 w(i; n, k) =
(i + k)!(i + k + 1)!

i!(i + 1)!
[xn−2k]

k
∏

m=0

1

1 − 2(i + 1 + m)x
.

Proof. Suppose P = e1e2 · · · en−k ∈ Pn,k and let R = {j | ej = R}, then |R| = k.
Furthermore, suppose R = {ej1, · · · , ejk

}, where 0 = j0 < j1 < j2 < · · · < jk 6 n−k−r =
jk+1 and it follows that

wi(P ) =

k
∏

m=0

[2i + 2m + 2]jm+1−jm−1

k−1
∏

m=0

(m + i + 1)(m + i + 2).

Let tm = jm+1 − jm − 1 for any 0 6 m 6 k. Then tm > 0 and
k

∑

m=0

tm = n − 2k. So,

w(i; n, k) =
∑

k
∏

m=0

[2i + 2m + 2]tm
k−1
∏

m=0

(m + i + 1)(m + i + 2)

=
(i + k)!(i + k + 1)!

i!(i + 1)!

∑

k
∏

m=0

[2(i + m + 1)]tm

where the sum is over all (k + 1)-tuples (t0, t1, · · · , tk) such that
k
∑

m=0

tm = n − r − 2k

and tm > 0. It is easy to see the sum is the coefficient of xn−2k in the power series
k
∏

m=0

1
1−2(i+1+m)x

. This completes the proof.
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Lemma 3.5 Let n > 3 and S ⊆ [3, n]. Then

(1) vpn([n − k + 1, n]) = w(0; n − 1, k).

(2) Suppose S 6= ∅ and V Pn(S) 6= ∅. Let r = maxS. For any 0 6 k 6 n− r− 1, we have

vpn(S ∪ [n − k + 1, n]) =
m

∑

i=0

w(k − i; m + i, i)vpn−m−i(S ∪ [r + 1, n − m − i]),

where m = n − r − k.

Proof. (1) Fix k > 0. By induction on n > k. For n̄ = k, we have vpk([1, k]) = 0. It is

easy to see w(0; k − 1, k) = k!(k + 1)![x−k−1]
k
∏

m=0

1
1−2(m+1)x

= 0. Hence, the identity holds

for n̄ = k. Suppose the identity holds for all n̄ 6 n. For n̄ = n + 1, by Lemma 3.3 and
the induction hypothesis,

vpn+1([n − k + 2, n + 1])

= 2(k + 1)vpn([n − k + 1, n]) + k(k + 1)vpn−1([n − k + 1, n − 1])

= 2(k + 1)w(0; n− 1, k) + k(k + 1)w(0; n − 2, k − 1)

= w(0; n, k).

Thus the identity holds for n̄ = n + 1.
(2) Let us apply induction on m̄ = n − r − k. For m̄ = 1, we have n − k = r + 1. By

Lemma 3.3,

vpn(S ∪ [n − k + 1, n])

= 2(k + 1)vpn−1(S ∪ [r + 1, n − 1]) + k(k + 1)vpn−2(S ∪ [r + 1, n − 2])

= w(k; 1, 0)vpn−1(S ∪ [r + 1, n − 1]) + w(k − 1; 2, 1)vpn−2(S ∪ [r + 1, n − 2])

=
m̄

∑

i=0

w(k − i; m̄ + i, i)vpn−m̄−i(S ∪ [r + 1, n − m̄ − i]).

Hence the identity holds for m̄ = 1. Suppose the identity holds for m̄ = m. For m̄ =
m + 1 = n − r − k, by Lemma 3.3,

vpn(S ∪ [n − k + 1, n]) = 2(k + 1)vpn−1(S ∪ [n − k, n − 1])

+ k(k + 1)vpn−2(S ∪ [n − k, n − 2]).

By the induction hypothesis,

vpn−1(S ∪ [n − k, n − 1]) =

m
∑

i=0

w(k − i; m + i, i)vpn−1−m−i(S ∪ [r + 1, n − 1 − m − i])
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and

vpn−2(S ∪ [n − k, n − 2])

=

m
∑

i=0

w(k − 1 − i; m + i, i)vpn−2−m−i(S ∪ [r + 1, n − 2 − m − i])

=

m+1
∑

i=1

w(k − i; m − 1 + i, i − 1)vpn−1−m−i(S ∪ [r + 1, n − 1 − m − i]).

It is easy to see

2(k + 1)w(k − i; m + i, i) + k(k + 1)w(k − i; m + i − 1.i − 1) = w(k − i; m + 1 + i, i)

for all i ∈ [m],
2(k + 1)w(k; m, 0) = w(k; m + 1, 0)

and
k(k + 1)w(k − m − 1; 2m, m) = w(k − m − 1; 2(m + 1), m + 1).

Hence, vpn(S∪ [n−k+1, n]) =
m+1
∑

i=0

w(k−i; m+1+i, i)vpn−1−m−i(S∪ [r+1, n−1−m−i]).

For any S ⊆ [3, n], recall that type(S) denotes the type of the set S.

Theorem 3.2 Let n > 3 and S ⊆ [3, n]. Suppose type(S) = (rk1

1 , rk2

2 , · · · , rkm
m ) with

m > 2 and V Pn(S) 6= ∅. Let r0 = 0, Ai = ri − ri−1 − ki and Bi =
m
∑

j=i

kj for any

1 6 i 6 m. Then

vpn(S) = 2n−rm

Am
∑

im=0

Am−1
∑

im−1=0

· · ·
A2
∑

i2=0

[

m
∏

s=2

w(Bs −
m

∑

j=s

ij; As + is, is)

·w(0; A1 + B1 −
m

∑

j=2

ij − 1, B1 −
m

∑

j=2

ij)

]

.

Proof. By induction on m. For m̄ = 2, by Lemma 3.5,

vpr2
(S) =

A2
∑

i2=0

w(k2 − i2; A2 + i2, i2)vpr1+k2−i2([r1 − k1 + 1, r1 + k2 − i2])

=
A2
∑

i2=0

w(B2 − i2; A2 + i2, i2)w(0; A1 + B1 − i2 − 1, B1 − i2).

Suppose the identity holds for m̄ = m. For m̄ = m + 1, by Lemma 3.5,

vprm+1
(S) =

Am+1
∑

t=0

w(km+1 − t; Am+1 + t, t)vprm+km+1−t(St),
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where type(St) = (rk1

1 , rk2

2 , · · · , (rm + km+1 − t)km+km+1−t). For every 0 6 t 6 Am+1, note
that A′

t,i = Ai and B′
t,i = Bi − t for any 1 6 i 6 m. By the induction hypothesis,

vprm+1
(S) =

Am+1
∑

t=0

Am
∑

im=0

Am−1
∑

im−1=0

· · ·
A2
∑

i2=0

[

w(0; A1 + B′
t,1 −

m
∑

j=2

ij − 1, B′
t,1 −

m
∑

j=2

ij)

· w(km+1 − t; Am+1 + t, t)

m
∏

s=2

w(B′
t,s −

m
∑

j=s

ij ; As + is, is)

]

=

Am+1
∑

im+1=0

Am
∑

im=0

Am−1
∑

im−1=0

· · ·
A2
∑

i2=0

[

m+1
∏

s=2

w(Bs −
m+1
∑

j=s

ij ; As + is, is)

· w(0; A1 + B1 −
m+1
∑

j=2

ij − 1, B1 −
m+1
∑

j=2

ij)

]

.

Example 3.2 Let n = 8 and S = {3, 7, 8}. Then type(S) = (31, 82), A1 = 2, A2 = 3,
B1 = 3 and B2 = 2. By Theorem 3.2, we have

vp8({3, 7, 8}) = w(2; 3, 0)w(0; 4, 3) + w(1; 4, 1)w(0; 3, 2)

+w(0; 5, 2)w(0; 2, 1) + w(−1; 6, 3)w(0; 1, 0).

Note that

w(2; 3, 0) = 216, w(0; 4, 3) = 0, w(1; 4, 1) = 456, w(0; 3, 2) = 0,

w(0; 5, 2) = 144, w(0; 2, 1) = 2, w(−1; 6, 3) = 0, w(0; 1, 0) = 1.

Thus vp8({3, 7, 8}) = 288.

4 Appendix

For convenience to check identities given in the previous sections, by computer search, for
1 6 n 6 8, we obtain the number vpn(S) of permutations in the set V Pn(S) 6= ∅ and list
them in Table 2.
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n

1 S = ∅
1

2 ∅
2

3 ∅ {3}
4 2

4 ∅ {3} {4}
8 4 12

5 ∅ {3} {4} {5} {3, 5} {4, 5}
16 8 24 56 4 12

6 ∅ {3} {4} {5} {6} {3, 5} {3, 6} {4, 5} {4, 6}
32 16 48 112 240 8 24 24 72

{5, 6}
144

7 ∅ {3} {4} {5} {6} {7} {3, 5} {3, 6} {3, 7}
64 32 96 224 480 992 16 48 112

{4, 5} {4, 6} {4, 7} {5, 6} {5, 7} {6, 7} {3, 5, 7} {3, 6, 7} {4, 5, 7}
48 144 336 288 688 1200 8 24 24

{4, 6, 7} {5, 6, 7}
72 144

8 ∅ {3} {4} {5} {6} {7} {8} {3, 5} {3, 6}
128 64 192 448 960 1984 4032 32 96

{3, 7} {3, 8} {4, 5} {4, 6} {4, 7} {4, 8} {5, 6} {5, 7} {5, 8}
224 480 96 288 672 1440 576 1376 2976

{6, 7} {6, 8} {7, 8} {3, 5, 7} {3, 5, 8} {3, 6, 7} {3, 6, 8} {3, 7, 8} {4, 5, 7}
2400 5280 8640 16 48 48 144 288 48

{4, 5, 8} {4, 6, 7} {4, 6, 8} {4, 7, 8} {5, 6, 7} {5, 6, 8} {5, 7, 8} {6, 7, 8}
144 144 432 864 288 864 1728 2880

Table 2. vpn(S) for 1 6 n 6 8 with V Pn(S) 6= ∅.
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