Value-Peaks of Permutations

Pierre Bouchard Hungyung Chang*
Département de mathématiques Department of Applied Mathematics
Université du Québec a Montréal National Sun Yat-sen University

Case postale 8888, Succursale Centre-ville Kaohsiung, Taiwan 80424

Montréal (Québec), Canada H3C 3P8

X changhy@math.nsysu.edu.tw
bouchard.pierre@uqgam.ca

Jun Ma Jean Yeh
Institute of Mathematics Department of Mathematics
Academia Sinica National Taiwan University
Taipei, Taiwan Taipei, Taiwan
majun904@sjtu.edu.cn jean.yh@ms45.url.com.tw

Yeong-Nan Yeh?

Institute of Mathematics
Academia Sinica
Taipei, Taiwan

mayeh@math.sinica.edu.tw

Submitted: Nov 29, 2009; Accepted: Mar 16, 2010; Published: Mar 29, 2010
Mathematics Subject Classification: 05A15

Abstract

In this paper, we focus on a “local property” of permutations: value-peak. A
permutation o has a value-peak o(i) if o(i — 1) < o(i) > o(i + 1) for some i €
[2,n — 1]. Define VP(0) as the set of value-peaks of the permutation o. For any
S C [3,n], define VP, (S) such that VP(c) = S. Let P, = {S | VP,(S) # 0}. we
make the set P, into a poset &, by defining S < T if S C T as sets. We prove
that the poset &2, is a simplicial complex on the set [3,n] and study some of its
properties. We give enumerative formulae of permutations in the set V P, (S).
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1 Introduction

Let [m,n] := {m,m +1,--- ;n}. If m > n, then [m,n] = 0. Let [n] := [1,n] and &,
be the set of all the permutations on the set [n]. We write permutations of &,, in the
form ¢ = (0(1)0(2)---0(n)). Fix a permutation ¢ in &,. For every i € [n — 1], if
o(i) > o(i+ 1), then we say that 7 is a position-descent of o. Define the position-descent
set of a permutation o, denoted by PD(c), as PD(o) = {i € [n — 1] | o(i) > o(i + 1)}.
Given a set S C [n — 1], suppose PD(o) = S for some 0 € &,,. We easily obtain the
increasing and decreasing intervals of ¢ from the set S. The permutation ¢ is a function
from the set [n] to itself. Since the monotonic property of a function is a global property
of the function, the position-descent set of a permutation gives a “global property” of the
permutation. We say a permutation o € &,, has a value-descent o (i) if o(i) > o(i + 1)
for some i € [n —1]. Define the value-descent set of a permutation o, denoted by V D(o),
as VD(o) = {o(i) | 0(i) > (i + 1)}. The value-descent set of a permutation is different
from its position-descent set. Let S C [2,n]. Suppose V D(o) = S for some 0 € &,,. We
only have that k is larger than its immediate right neighbour in the permutation o for any
k € S and do not obtain the increasing and decreasing intervals of ¢ from the set S. So
the value-descent set of a permutation gives a “local property” of the permutation. For
any S C [2,n], define a set VD, (S) as VD, (S) ={c € &, | VD(o) = S} and use vd,,(S)
to denote the number of permutations in the set VD, (9), i.e., vd,,(S) = |[VD,(S)]. In a
joint work [1], Chang, Ma and Yeh derive an explicit formula for vd,,(.5).

In this paper, we are interested in another “local property” of permutations: value-
peak. A permutation o has a value-peak o(i) if (i — 1) < o(i) > o(i + 1) for some
i € [2,n—1]. Define VP(0) as the set of value-peaks of o, i.e., VP(0) = {o(i) | o(i—1) <
o(i) > o(i + 1)}. For example, the value-peak set of o = (48362517) is {5, 6,8}. Since o
has no value-peaks when n < 2, we may always suppose that n > 3. For any S C [n],
define a set V P,(S) as VP,(S) = {o € &, | VP(0) = S}. Obviously, if {1,2,} NS #
then V P,(S) = 0.

Example 1.1

VPs({4,5}) = { 14253,14352, 24153, 34152, 24351, 34251,
15243, 15342, 25143, 35142, 25341, 35241 }.

Suppose S = {iy,ia, - i}, where iy < iy < .-+ < ix. We prove the necessary and
sufficient conditions for VP, (S) # 0 are i; > 2j + 1 for all j € [k]. Let P, = {S |
VP, (S) # 0}. We make the set P, into a poset &, by defining S < T if S C T as sets.
Fig. 1 shows the Hasse diagrams of &3, &2, and Y5

3.5} {4.5)

’ ¢’ (@”
¢ ¢

[

Fig.1. the Hasse diagrams of &3, &2, and &s.
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In the next section we prove that &7, is a simplicial complex on the vertex set [3,n| and
derive some properties of Z,.

Then we turn to enumerative problems for permutations by value-peak set. Let vp,(S)
denote the number of permutations in the set V P,(S5), i.e., vp,(S) = |V P,(5)|. For the
cases with |S| = 0,1,2, we derive explicit formulae for vp,(S). For general n > 3, we
derive the following recurrence relation. Let n > 3 and S C [3,n]. Suppose VP, (S) # 0
and let 7 = max S if S # (), 1 otherwise. For any 0 < kK <n —r — 1, we have

vpp(SUn—k+1,n]) =2(k+1)vp,—1(SUR—k,n—1])+k(k+1)vp,—2(SU[R—k,n—2]).

m

For any S C [3,n], we write the set S in the form S = |J[r; — k; + 1,7;] such that
i=1

ri < 1rip1—kip1 — 1 for all i € [m—1]. For example, let n = 12 and S = {3,4, 8,10, 11, 12}.

Then S = [3,4] U [8,8] U[10,12]. We have 1 =4, k1 =2, ro =8, ke =1, 13 = 12, k3 = 3.

Define the type of the set S, denoted type(S), as (ri*,rd>, ... rF=). We conclude with a

formula for the number of permutations in terms of the type of S.

The paper is organised as follows. In Section 2, we give the necessary and sufficient
conditions for V' P,(S) # (). We prove the poset &2, is a simplicial complex on the set
[3,n] and study its some properties. In Section 3, we investigate enumerative problems of
permutations in the sets V P,(S). In the Appendix, we list vp,(.S) for 1 < n < 8 obtained

by computer searches.

2 The Simplicial Complex &,

In this section, we give the necessary and sufficient conditions for V' P,(S) # ) for any
n >3 and S C [n]. We show &, is a simplicial complex on the set [3,n] and study some
properties of &2,,.

Theorem 2.1 Let n > 3. Suppose S = {iy,ia,--- ,ix} is a subset of [n], where i; < iy <
-+ <. Then the necessary and sufficient conditions for V.P,(S) # 0 are i; > 2j+1 for
all j € [K].

Proof. Suppose VP,(S) # 0 and let 0 € VP,(S). For any j € [k], all the integers
11,12, -+ ,; are a value-peak of o. Then i; — 7 > j + 1, hence, i; > 2j + 1.

Conversely, suppose i; > 2j + 1 for all j € [k]. Suppose [n]\ S = {a1,a2,- -+, ap_k}
with a; < as < --- < a,_x. Let o be the permutation in &,, defined by

o(25) =1; for 1 < j <k,
0(2j—1)=a; forl1<j<k+1,
o(j) =a; for 2k +2 < j < n.
Obviously, VP(c) = S and VP,(S) # 0. i

Corollary 2.1 Let n >3 and S C [n]. Suppose VP, (S) # 0. We have |S| < [25].
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Proof. Suppose S = {iy,ig, -+ , i} with iy < iy < -+ <. Since VP,(S) # 0, Theorem
2.1 tells us that n > 4, > 2k + 1. Hence k£ < L"T_lj [ |

Corollary 2.2 Let n >3 and S C [n]. Suppose VP,(S) # 0. Then for S| < [*5], we
have VP, 1 (SU{n+1}) # 0; for |S] = | %52 ], we have VP, (SU{n+1}) # 0 if n is
even; otherwise, V P,i1(SU{n+1}) =0.

Proof. Let k = |S|. k < |%2] implies 2(k 4+ 1) + 1 < 2[2}] +1 < n+ 1. So,

VP, 1(SU{n+1})# 0 when |S| < |22 ]. For the case with k = |25 |, we have

n+1 if nis even,

2<k+1)+1:{ n+2 if nisodd.

By Theorem 2.1, VP, 1(SU{n+1}) # 0 if n is even; otherwise, VP, 1 (SU{n+1}) = 0.
|

Following [3], define a simplicial complez A on a vertex set V' as a collection of subsets
of V satisfying:
(1) If z € V, then {z} € A, and
(2)if Se Aand T'C S, then T' € A.

Theorem 2.2 Let n > 3. Then 2, is a simplicial complex on the set [3,n].

Proof. Obviously, ) € £2,,. For any 3 < x < n, Theorem 2.1 implies {z} € &,. Let T
be a subset of [n] such that V P,(T) = (). Note that VP,(S) = () for any " C S. Thus
given an S € &, we have T' € &2, for all T' C S. Hence, &2, is a simplicial complex on
the set [3,n]. i

If P and () are posets, then the direct product of P and @ is the poset P x () on the
set {(z,y) | v € Pand y € Q} such that (z,y) < (¢/,¢) in P x Q if z < 2’ in P and
y < ¢ in Q. Recall that the poset n is formed by the set [n] with its usual order. By
Corollary 2.2, we obtain a method to construct the poset &, from &Z,.

Theorem 2.3 &1 22 x P, if n is even; P = (2 x P,) \ ({1} X PnianlJ_l) if n
15 odd.

Now, we derive some properties of the simplicial complex &2,,. By Theorem 2.3, it is
easy to obtain the Md6bius function of the poset &2,.

Corollary 2.3 Let pi, = j1o, be the Mdbius function of the poset &,. Then u,(S,T) =
(=D)IT=IS1 for any S X T in 2,,.

Proof. Obviously, u3(0, {3}) = —1. By induction for n, we assume p,,(S, T') = (—1)/71-I5l
for any S < T in &,. By Theorem 2.3, it follows that

pn(S\{n+1}, T\ {n+1}) if n+1€S5NT,
pns1(S,T) =< (S, T) if n+1¢SUT,
—pn (S, T\ {n+1}) if n+1¢Sandn+1€T
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for any S < 7T'. Simple computations show that i, (S, T) = (—1)T=I5I, i

For every S € &Z,, we call the element S a face of &2, and the dimension of S is
defined to be |S| — 1, denoted dim(.S). In particular, the void set ) is always a face of
P, of dimension —1, i.e., dim(f)) = —1. Also define the dimension of &2, by dim(£,) =
grelggi(dim(S)).

Theorem 2.4 dim(2,) = |"%5*] — 1.

Proof. Taking S = {3,5,---,2|%*| 4+ 1}, by Theorem 2.1, we have S € &,. From
Corollary 2.1 it follows that the dimension of &2, is |25+ — 1. |
Define P,; as the set of all the faces of dimension ¢ in Z,, ie., P,; = {S €
Po | |S| =i+ 1} for any —1 < i < [%] — 1. Let po; = |Pn;l. The sequence
(Pr.—1, Pn,os - - - ’pn,L%(n—l)J—l) is called the f-vector of the simplicial complex &,. Define
(=)
the f-polynomial of 2, as P, (x) = : > pn,i_lxlé(”_m‘i.

To study the f-vector of &2, we inltr(z)duce the concept of left factors of Dyck path.
An n-Dyck path is a lattice path in the first quadrant starting at (0,0) and ending at
(2n,0) with only two kinds of steps—rise step: U = (1,1) and fall step: D = (1,—1).
We can also consider an n-Dyck path P as a word of 2n letters using only U and D. Let
L = wyws - - -w, be a word, where w; € {U,D} and n > 0. If there is another word R
which consists of U and D such that LR forms a Dyck path, then L is called an n-left
factor of Dyck paths. Let L, denote the set of all n-left factors of Dyck paths. For any
i >0, let £, ; denote the set of all n-left factors of Dyck paths from (0,0) to (n,n — 2i).
It is well known that |£,|, the cardinality of £,, equals the nth central binomial number
b, = (@J) and [L,,;| = 2=22L(." ) (see Cori and Viennot [2]).

In the following lemma, we give a bijection ¢ from the set P,, to the set L,_;.

Lemma 2.1 There is a bijection ¢ between the set P, and the set L,y for any n = 3.
Furthermore, the number of elements in &2, is (LEJ)‘
2

Proof. For any S € P,,, we construct a word ¢(S) = wyws -+ - w,_1 as follows:

(Dt i+1esS
YT U if i+1¢8

for any i € [n — 1]. Theorem 2.1 implies ¢(S) is an (n — 1)-left factor of a Dyck path.

Conversely, for any an n-left factor wyws - - - w,_; of a Dyck path, let S = {i+1 | w; = D}.

Then V P,(S) # (). Thus the mapping ¢ is a bijection. Note that the number of (n—1)-left
. n—1 n—1

factors of Dyck paths is (L"T’lJ)’ Hence, |P,| = (L%J)' i

Corollary 2.4 Let n > 3. There is a bijection between the set P, ; and the set L,,_1 41

for any —1 < i < L"T_IJ — 1. Furthermore, we have

)1 if 1=-—1,
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Proof. We just consider the case with ¢ > 0. For any S € P, ;, since |S| = i + 1, the
number of the letter D in the word ¢(S) is ¢ + 1. Hence, ¢(S) is a left factor of a Dyck

path from (0,0) to (n — 1,n — 2i — 3). So, ¢(S5) € L,_1,41. Hence, p,; = |Lo_1,i1| =
n—=21—2 (n—l) l

i+1 7

Corollary 2.5 Letn > 3. The sequence (Pn.—1,Pno, - - - ,pni%(n_l)J_l) satisfies the follow-
ing recurrence relation: for any even integer n,

Pni Zf 1= -1,
Pnt1i = Pni—1 _'_pn,l Zf ], = 07 1’ cee % _ 2’
Pnji—1 Zf 1= % — 1;
for any odd integer n,
[—— Pni Zf 7;:—1’
n+1,1 Pnji—1 +pn7l Zf 7,:071’ ’nT_37

with initial conditions (ps _1,ps0) = (1,1).

Proof. First, we consider the case of an even integer n . It is easy to see p,y1,-1 =

Pn,—1 = L.

For any S € P, 1,4, Corollary 2.2 tells us n + 1 € 5. Note that S € P, 1,y if
and only if S\ {n+1} € P, 1,_5. Hence, p, 1,1 =Py 1.

For every i € {0,1,..., %n — 2}, it is easy to see P,; C Ppy1,4. For any S € Py
withn+1€ S, S\ {n+ 1} can be viewed as an element of P, ;_;. Conversely, for any
S € P,i-1, Corollary 2.2 implies S U {n + 1} € P,41,. Hence, pyi1i = Pni-1 + Pni-

Similarly, we can consider the case of an odd integer n. i

Theorem 2.5 Let n > 3.

(1) The f-polynomial P, (x) of the simplicial complex 2P, satisfies the following recur-
rence relation:

0P (2) = (14 2) P(2) — en) - i 1 (”n_if)

for any n, where e(n) = 0 if n is even; e(n) = 1 otherwise, with initial condition

(2) Let P (x,y) = gggzn(at)y” Then P(z,y) = {(1 +y;-f?J()g£1++1;C2?;2C(y2)] - 1] e

where C(y) = == 3;4@’.
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Proof. (1) Obviously, Z3(x) = x + 1. Given an odd integer n, we suppose n = 2i + 1
with ¢ > 1. Corollary 2.5 implies £ Py 10(x) = (1 + 2) Poi1(x) — (Zil)( "). Similarly,
given an even integer m, we suppose n = 2¢ with ¢ > 2. By Corollary 2.5, we have

Poit1(x) = (1 + ) Pai(x). ' '
(2) Let Poga(x,y) = Z Poiv1()y? ™ and Popen(z,y) = Y. Poi(x)y*. We have

122
f@odd(xuy) = (I + 1)y3 (I + 1)ygzeven(x y) and gZ(x y) gzodd(x y) + gzeven(x y) It
is easy to check 2Py, 3(x) = (1 + ) Poi1(x) — ( ) . S0, Poqq(x,y) satisfies

the following equation
Iﬁodd(‘%} y) = (I + 1)2y2<@odd($v y) + (ZIZ' + 1)y3[1 +T— C(y2)]a
(z+1)y°[L + 2z — Cy?)]

h o l—m E | 1 — . H
where C'(y) = quivalently, Z,q4(z,y) T — (r 1 % ence
(I+y+ay)l+z-Cy*) 2
P = —1
(2,9) T (1 %P y
i
L3(n—1)]
Let 7, () = Pp(x—1)= > h, ZL’L (n=1)]=7 The polynomial .7, (z) and the sequence
=0

(hn,Ovhn,lu' Ty
o,y 1(n—1) |) are called the h-polynomial and the h-vector of &7, respectively.

Corollary 2.6 Letn > 3.
(1) The h-polynomial 7, (x) of the simplicial complex &, satisfies the recurrence relation:

(2= DO trsla) = 2tite) — ) ("))

for any n, where e(n) = 0 if n is even; £(n) = 1 otherwise, with initial condition
H(x) = .

(2) Let H(x,y) = > I (x)y™. We have 5 (z,y) = {

n>3

(1 +2y)lr - Cy?)] 2
r—1—a%y? _1] Y

Proof. (1) Since 7,(x) = Z,(x — 1), by Theorem 2.5, we easily obtain J%,1(z) =
v, (x) if n is even, and (z — 1), 41 (z) = 2.,(z) — -2 (n 1) if n is odd, with initial

nt1
condition J4(x) =

(2) Since S (x,y) = P(x — 1,y), we have J(x,y) = [(1 +ay)le —Cly*)] _ 1} y>.

x— 1 — x2y?

Corollary 2.7 Let the sequence (hp o, by, - =hn7té(n—1)J) be the h-vector of &2,. Then
hy; satisfies the following recurrence relation:

hn,O Zf L= 07
hn—l—l,i = hn,i + 8(n)hn-i-l,i—l Zf I<i< L%J - 1’
e(n)eig) if =13l
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where ¢, = m%rl (2;:) and e(n) = 0 if n is even; otherwise, e(n) = 1, with initial conditions

(hso,hs1) = (1,0). Equivalently,

o= B (12 50)
5] +i\ [5]
Proof. The recurrence relations are obtained by comparing coefficients on both sides of

the identity in 2.6 (1). Consider t,; = EJ Z(LV_JL]”). Note that t,; and h,; satisfy the
2

) T

Remark 2.1 Let n > 3. The number of left factors of the Dyck path from (0,0) to
(3] +i—1,1%] —i—1) equals EJJF (! éﬂ) Jor any 0 < i <[],

same recurrence relations and (ts0,t31)

Define the reduced Euler characteristic of 2, by x(£,) = Z (=) ppi1.

B 0 if n s odd,
Corollary 2.8 For anyn >3, X(Z,) = 2-1)% (1n_2 ) i nis even
n 5(n—2) ’

Proof. Clearly, #3(—1) = 0. Theorem 2.5 tells us

0 if nis even,

P (—1) :{ L(ln_l)) if nis odd

nt+1\5(n—-1

for any n > 4. Since Y(2,) = (=1)"2" 17122, (~1), we have

o 0 if n is odd,
X(Zn) = %(%&—i)) if n s even.

| |

Let P be a finite post. Define Z(P, i) to be the number of multichains x; < xo < -+ <

x;—1 in P for any i > 2. Z(P,i) is called the zeta polynomial of P. We state Proposition
3.11.1a and Proposition 3.14.2 in [3] as the following lemma.

Lemma 2.2 [3] Suppose P is a poset.
(1) Let d; be the number of chains x1 < x5 < -+ < x;_1 in P. Then Z(P,i) =Y d;(}73).
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(2) If P is simplicial and graded, then Z(P,z + 1) is the rank-generating function of P.
Corollary 2.9 Letn > 3 and i > 2. Then
(1) Z(Pp,i) = (i — V)" 2, (X5) for any i > 2,

(2) Z(P,,1) satisfies the recurrence relations:

i— 1)zt /oy
Z( P, 1) = 1Z(Pp,i) — g(n)% (l(” —11))7

where e(n) =0 if n is even; e(n) = 1 otherwise, with initial condition Z(Ps,1) = i.

(8) Let Z(x,y) = > Z(P,,x)y". We have

n>=3

Loy — [(LEEDE = (= VOGP~ 1) s

1—x2y?

Proof. (1 ) Let P,(x) be the f-polynomial of &2,. We have the rank-generating function
of P, is x3=V 2, (1), Lemma 2.2(2) implies that Z(2,,1) = (i — 1)1*771 2, (15).
(2) The recurrence relations for Z (A, 1) follow from Theorem 2.5.
(3) Note that Z(Z,,x + 1) =zl 12,(1) = (\/5)“—“5( )2,(L). By the proof of

Theorem 25, we have Poaa(a,y) = CHILECHN and 5,,(1,y) = Zestees
Then

2t Ly) = AT 2 )y

— % even( ,yf) \/1_ odd( ,YVT)

_ {(1+y+xy)[1+:c zC(y? x)]_l]yz.

1—(z+1)%2
[ |
Let d, ; be the number of chains S, ;1 < Sp2 <+ <S5, of Z,,.
Theorem 2.6 For anyi > 1,
n 2di+1 —nNn
Ao, = e
- Z (dh da, - -+ 7di+1) n
i+1
where the sum is over all (dy,--- ,diy1) such that > dp = n, dp > 0, dp = 1 for all
k=1

2<k5<ianddi+1>n—L"T_1J.
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Proof. Let ¢ > 1 and S,,1 < Sp2 < --- < Sy, be a chain of &,. Suppose |5, x| = ji for
any k € [i]. Then 0 < ji < jo < --- < j; < [251]. There are p, j,_1 ways to obtain the
set Sy Given S, with k > 2, there are (]Zfl) ways to form the subset S, 1 C Sy .

Hence,

i1,
dw,; = Z H<];:1)pn,ji—1

0=jo <]i<j2<---<ji<|_%] k=0

. Z n 2di+1—n
N dl,dg,"' ,di+1 n ’

i+l
where the sum is over all (dy,---,d;+1) such that Y dp = n, dy > 0, di > 1 for all
k=1
2<k<ianddi+1>n—w7_lj. [ |
Corollary 2.10 For anyn > 3,
|25+ +2 |n=l]jo; i=2
xl 2 ! n 2d; — n
P, (r) = _— 1—3 ’
@ zz:; (i —2)! E( o Z <d1’d2’ o >di> n
where the second sum is over all (dy,--- ,d;) such that > dy =n, dy >0, dx > 1 for all
k=1
2<k<i—1landd;, >n— L"T_lj
|25t +2

Proof. Lemma 2.2(1) implies Z(Z,,,1) = > do, i1 (;:g) By Corollary 2.9, we have
j=2

1 1 i—2
Pn (z—1> - (z—1> dﬂ”’j‘1<j—2)

|25t L5t )+2

=2
for any ¢ > 2. Note that
L5+ 1+2 1 [25H+2 o1y -2
n—1 =—1 xl™2 J
Y dna(504) = X Ty 0 ke
|25t |42 (m=l g i=2
is a polynomial. Hence, Z,(z) = > x_(j_T), [1(1—kx)ds, ;-1 i
i=2 k=1

3 Enumerations for Permutations in the Set V P,(.5)
S

In this section, we will consider enumerative problems of permutations in the set V P, (
Let vp,(S) denote the number of permutations in the set V P,(5), i.e., vp,(S) = |V P,(S)
First, we need the following lemma.

).
|.
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Lemma 3.1 Letn >3 and S C [n]. Suppose VP, (S) # (. Then
(1) vpus1(S) = 2vp,(S), and
(2) let m = max.S. We have vp,(S) = 2" "vp,(S) for any n > m.

Proof. (1) It is easy to see ((n+1)o(1)---o(n)) € VP,11(S) and (o(1)---o(n)(n+1)) €
VP,1(S) for any 0 = (0(1)---0(n)) € VP,(S). Conversely, for any o € VP,1(S5), the
position of the integer n +1is lorn+1,ie., 07} (n+1)=1orn+1,sincen+1¢ S.
Hence, vp,11(S) = 2up,(S).
(2) Iterating the identity of Lemma 3.1(1), we obtain vp, (S) = 2" "vp,,(S). |
For any 0 € &,,, let 7 be a subsequence (o(j1)o(j2) -0 (jx)) of (o(1)---0(n)), where
1 <j1 < jo<--+<jp <n. Define ¢, , as an increasing bijection of {o(j;) | 1 < i < k}
onto [k]. Let ¢5(7) = (¢por(0(J1))Por(0(j2)) - - b6r(0(jr))). For the cases w
0, 1,2, in the following theorem, we derive the explicit formulae for vp,(S)

Theorem 3.1 Letn > 3. Then
(1) vpa(0) =271,
(2) vp,({i}) = 2"72(272 — 1) for any i € [3,n], and

(3) vpu({i,5}) =27 3(272 1) (2071 1) 42" =75 3(372 =27 1) for any i, j € [3,n]
and 1 < j.
Proof. (1) For any o € &,,, suppose the position of the integer 1 isi+1, i.e., 071(1) = i+1.
Then o € VP,(0) if and only if o satisfies (1) > --- > o(i+ 1) < --- < o(n). For each
integer j # 1, the position of j has two possibilities at the left or right of the integer 1.
Hence, vp, (0) = 2" 1.
(2) By Lemma 3.1(2), we first consider the number of permutations in the set V P;({i}),
where i > 3. For any o € VP,({i}), suppose the position of the integer i is k + 1,
ie, 07(i) = k+1. Then 1 < k <i—2, ¢5(c(1)---0(k)) € VPu(0) and ¢,(c(k +

2)-+-0(i)) € VP_j_1(0). There are (",') ways to form the set {o(1),---,o(k)}. So,

vp;({i}) = kzl (1) 2k 12imh=2 = 21-2(272 — 1), Hence, vp,({i}) = 2"2(2172 - 1).

(3) It is (;asy to see the identity holds for ¢ = 3 and j = 4. By Lemma 3.1(2), we first
consider the number of permutations in the set V P;({i,j}), where 3 < i < j. We begin
from the case o € VP;({i,j}) with 071(i) < o7'(j). Let

Ti(oc) = {o(k)|o(k)<iand k<o (i)},
Ty(o) = {o(k)|o(k)<iand o7 '(i) <k <o '(j)},
T35(0) = {o(k)|o(k)<iand k> o '(5)}.

3
Note that Ti(c) # (0 for k = 1,2 since o has a value-peak i and |J Ty(0) = [i — 1]. Let
k=1

Ti(o) = {o(k)|i<o(k)<jand k<o (i)}
Ts(o) = {o(k)|i<o(k)<jand o (i) <k <o '(j))

~—
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We discuss the following two subcases.
Subcase 1. T3(o) = 0.

Let Ts(o) = {o(k) | i < o(k) < j,k > c7'(j)}. Then Ts(c) # 0 since o must have a
6

value-peak j and |J Ty(0) = [i + 1,57 — 1]. For k = 1,2,6, the subsequences of o, that
k=4

are determined by elements from 7T 1(0), correspond to a permutation in V Py, () (D). The
subsequences of ¢, that are determined by elements from 7T;(c) and T5(0), are decreasing
and increasing, respectively. So, the number of permutations under this subcase is

7 —1 _ _ j—1—1 _ . - L
Ty |~16|Ts|—1 ITol~1 _ oj—4(0i-2 i1
2 (lTll,szl)2 22 <|T4|,|T5|,|T6|)26 =¥ -HET ),

(Th,T») (Ty,T5,Ts)

where the first sum is over all pairs (77, Ty) such that T; # () for i = 1,2 and T1UT; = [i—1];
the second sum is over all triples (T}, T5, T5) such that Ty # () and TyUT5;UTs = [i+1, j—1].

Subcase 2. Tz(o) # 0.
Suppose min 73(c) = s. Let

Ts(o) = {o(k)|i<o(k)<jand o '(j) <k <o '(s)},
Ty(oc) = {o(k)|i<o(k)<jand k>o'(s)}.

Then, for k = 1,2, 3, the subsequences of o, that are determined by elements from T} (o),
correspond to a permutation in V Pz, () (0). The subsequences of o, that are determined
by elements from Ty (o) and Ts(0), are decreasing. The subsequences of o, that are deter-
mined by elements from T5(o) and T7(0), are increasing. So, the number of permutations
under this subcase is

1—1 o N | |
oI =1o[To| =19l Ts|=1yj—i=1 _ 92j—i=6  3(3i=2 _ gi=1 4 7
(ﬂ%ﬁ) (|T1|’ |T2|7 |T3|> ( -+ ),

where the sum is over all triples (77, Ty, T3) such that T; # () for i = 1,2, 3 and T;UT>UT3 =
[i —1].

Similarly, we may consider the case o € V P;({i,7}) with ¢ (i) > 0~!(j). Therefore,
vp;({i,j}) =2[2774(22 = 1)(20 "1 = 1) 4 2%7776.3(3"2 — 21 + 1)]. In general, for any
n>3and 3 <1<y <n,

vpa({i, j}) = 273272 — 1)(207 — 1) 4 2m T35 - 21 ),

In the following lemma, we give a recurrence relation for vp,(S).

Lemma 3.2 Letn >3 and S C [n—1]. Then

wpn(SU{n}) = [n—2=2Slopa1(S) + > 2vpua(SULD).

Jj¢S.i<n
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Proof. Suppose 0 € VP, _1(S). We want to form a new permutation 7 € VP,(S U {n})
by inserting the integer n into o. For any j € S, since the integer j is a value-peak in
the new permutation, we can not insert n into o beside 5. But the integer n must be a
value-peak. So, there are (n — 2 — 2|S|) ways to form a new permutation 7 from ¢ such
that 7 € VP,(SU{n}).

For any j ¢ S with j <n and 0 € VP, 1(SU{j}), we must insert n into o beside
7 such that n becomes a value-peak. So, there are 2 ways to form a new permutation 7
from o such that 7 € VP,(S U {n}).

Hence, vp,(SU{n}) =[n—2—=2|S|Jop,_1(S)+ > 2-vp,_1(SU{j}). i
j¢S,j<n
For any S € [n], suppose S = {iy,i2,...,9t}. Let xg stand for the monomial

Ty Ty -+ - T, In particular, let xp = 1. Given n > 3, we define a generating function
as follows

g"(xh L2y .-y T y) = Z XVP(U)y‘ P,
ceSy,
We also write g, (x1, xo, ..., x,;y) as g, for short. By the recurrence relation as above, we

obtain the following result for the generating function g,,.

Corollary 3.1 Let n > 3 and g, = Y. Xvp(s )y‘vp

0’6677,

. Then g, satisfies the following

Tecursion:

= g, 209n
Gn+1 = 2+ (n = D)xpi1y]gn + 22541 Z oz, 236’n+1y 8
i=1

for all n > 3 with initial condition g5 = 4+ 2x3y, where the notation “69” 7 denotes partial
differentiation of g, with respect to y.

Proof. Obviously, g3 = 4 + 2x3y and ) xVP(U)yWP(UN = 3 up,(S)xsy'®l. Hence,
oe6, SC[2,n]
In+1 = Z Upn+1(S>XSy|S‘

SCn+1]

= Z Upn+1(S)XSyIS‘ + Z Upn+1(S)Xsy‘S|
SCn+1],n+1eS SCln+1],n+1¢S

= Z (n —1—2[S))vpa(S Z 200, (S U {i}) | xgTnp1y ' 4 29,
SCn] ien)\S

= 2 Z Z vpn (S U{i})xsmns1y* ! =2 Z |S opn(S)xgn 1yt

SC[n]ie[n]\S SCln]

+24 (n = 1)Zns1y]gn-
Note that

Z |S[vpn(S)xsy!™I ™!

SCn]
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and

vpn (S U {i})xg2p 1y

_ Kl Xs
fr— ’U -
P (S)Tnt1y E -

SC[n],5#0 ies

Therefore, g,11 = [24+ (n — Dzp1ylgn + 22001 Y giﬁ - 2$n+1y2%’ u
i=1

By computer search, we obtain vp,(S) for all 3 <n < 8 and S C [3,n] and list them
in Appendix. In Table 1., we give the generating functions g, for 3 <n < 5.

The generating function g, for 3 < n <5
g3 =4+ 2x3y
gs = 8+ dwzy + 1224y
g5 = 16 + 8x3y + 2424y + 5625y + daswsy® + 1204751

Table 1. The generating function g, for 3 < n < 5.

Corollary 3.2 Let n >3 and S C [3,n].

(1) Suppose S = {i1,... i}, where iy < iy < ... < iy. If there exists j € [k] such that
i; =2j+1, then vp,(SU{n}) = [n—2—=2[S|Jvp,—1(S) + > 20p,—1(SU{i}).
i¢S,2j+2<i<n

(2) vpn({3,5,...,2k + 1}) =271 for all k € [| %5 ]].

Proof. (1) By Theorem 2.1, VP,(SUi) = () for any ¢ ¢ S and i < 2j+ 1 since i; = 25+ 1.
We immediately obtain the results as desired.

(2) By induction on k. For k = 1, by Theorem 3.1(2), we have vp,({3}) = 2"2.
Suppose the identity holds for any k = k. For k = k+1, by Lemma 3.2 and the induction
hypothesis, vpor+3({3,5,...,2k+3}) = vpars2({3,5,...,2k+1}) = 2upar1({3,5, . .., 2k+
1}) =2-2F = 2k Hence vp,({3,5,...,2k + 3}) = 2n2k=3 . o+l — gn-k=2 |

Now, we give another recurrence relation for vp,(.S).

Lemma 3.3 Letn >3 and S C [3,n]. Suppose VP,(S) # 0 and let r = max S if S # (),
1 otherwise. For any 0 < k <n—r —1, we have

vp(SUn—k+1,n]) =2(k+1)vp,—1(SU[n—k,n—1])+k(k+1)vp,—2(SU[n—k,n—2]).

Proof. For any 0 € VP,(SU[n — k+ 1,n]), we consider the following four cases.
Case 1. There are no integers i € [n—k+1,n| such that the position of i is beside n—k
in o, i.e., |[c71(i) =07 (n — k)| = 1. Then 07! (n — k) = 1 or n since the permutation o
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has not a value-peak n — k. We obtain a new permutation 7 by exchanging the positions
of n —k and n in . Clearly, 7 € VP,(SU[n — k,n — 1]). Lemma 3.1 (1) tells us
vpp(SU [n—k,n—1]) = 2up,—1(S U [n — k,n — 1]). Hence, the number of permutations
under this case is 2 - vp,—1(S U [n — k,n — 1]).

Case 2. There are exactly two integers j,m € [n—k+1,n] such that |07 (j)—o~ (n—
k)] =1and |c7'(m) — o~ (n — k)| = 1. Deleting j and m, we obtain a subsequence 7 of
o . Then ¢,(7) € VP,_o(SU[n —k,n —2]). Note that there are k(k — 1) ways to form
the pairs (j,m). Hence, the number of permutations under this case is k(k — 1)vp,_2(S'U
n—k,n—2|).

Case 3. There is exactly one integer j € [n—k+1,n] such that |oc=(j) -0~ (n—k)| = 1.
Then there are k ways to form the set {j}. Let 7 be the subsequence of o obtained by
deleting j. There are the following two subcases.

Subcase 3.1. 07 (n — k) # 1 and n. Then ¢,(7) € VP, 1(SU [n — k,n — 1]). Hence,
the number of permutations under this subcase is k - vp,—1(S U [n — k,n — 1]).

Subcase 3.2. 07 (n — k) =1 or n. Then ¢,(1) € VP, 2(SU[n — k,n —2]). Hence,
the number of permutations under this subcase is k - vp,—2(S U [n — k,n — 2]).

So,

vpp(SUn —k+1,n])
= 20p,—1(SUn—k,n—1])+k(k—1op,—2(SU[n—k,n—2])
+2k - vp,—1(SU[n—k,n—1]) + 2k - vp,—2(SU [n — k,n —2])
= 2(k+ Duvpp1(SU[n—k,n—1]) +k(k+ 1vp,—2(SU[n —k,n—2]).

i

Now we associate the recurrence relation in Lemma 3.3 with a lattice path in the plane

7 x 7., where Z is the set of integers. In particular, let (n, k), (n —1,k) and (n — 2,k —1)

be three vertices in the plane Z x Z. We get a step (1,0) (resp. (2,1)) by connecting the

vertex (n — 1,k) ( resp. (n — 2,k — 1)) to the vertex (n,k) and give this step a weight
2(k+1) (resp. k(k+1)). Fig. 2 shows the resulting graph.

(n-1,k) 2(k+1) (n,k)
k(k+1

[ )
(n-2,k-1)

Fig. 2. the graph resulting from the recurrence relation.

Fixing a set S, let the weight of the vertex (n, k) be vp,(S U [n —k + 1,n]). It is easy
to see we can obtain the recurrence relation for vp,(S) by Fig. 2. So we introduce the
concept of value-peak path in the plane Z x 7Z as follows.

A wvalue-peak path is a lattice path in the first quadrant starting at (0,0) and ending
at (n, k) with only two kinds of steps—horizon step H = (1,0) and rise step R = (2, 1).
We also consider a value-peak path P from (0,0) to (n, k) as a word of n — k letters using
only H and R. Let P, be the set of all the value-peak paths from (0,0) to (n, k). Let
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i be a nonegative integer and P = ejeq---€,_ € P, . For every j € [n — kJ, define the

weight w;(e;) of the step e; as follows: if the step e; connects a vertex (z,y) to a vertex

(x +1,y), then w;(e;) = 2i + 2(y + 1); if the step e; connects a vertex (z,y) to a vertex

(x+2,y+1), then w;(e;) = (y + i+ 1)(y + i+ 2). Furthermore, define the weight of the
n—k

value-peak path P, denoted w;(P), as w;(P) = [] wi(e;) and w(i;n, k) = >, w(P).
7j=1 PEP,,L,;v

For any i < 0, let w(i;n,k) = 0.

Example 3.1 Let n =8, k =3 and ¢ = 0. We draw a value-peak path P = ejeqezeqses =
HRRHR from (0,0) to (8,3) in Fig. 3. For every step e; in P, we give a label on the
step to denote the weight of e;, i.e., wo(e1) = 2, wo(ez) = 2, wp(ez) = 6, wo(eq) = 6,
wo(es) = 12. Hence, wy(P) = 1728.

.................................

.................................................................

P

00
Fig. 3. A value-peak path P with weights from (0,0) to (8, 3).
- k)(i 1)! i 1
Lemma 3.4 w(i;n, k) = i+ k) (,Z +k+l) [27 2] H , :
i+ 1)! 1-2(i+14+m)x

Proof. Suppose P = ejey---€, € P,y and let R = {j | e; = R}, then |R| = k.
Furthermore, suppose R = {e;,, - ,¢e;, }, where 0 = jo < j1 < jo < -+ < jy K n—k—1r =
Jr+1 and it follows that

k k—1
= [[2i +2m +2pmo=m =t T (m+ i+ 1) (m +i +2).
m=0 m=0

k
Let tp = Jms1 — Jm — 1 for any 0 < m < k. Then ¢, > 0 and > t,, = n — 2k. So,

m=0

w(i;n k) = ZH 2z+2m+2tm1:[(m+i+l)(m+i+2)

m=0

(i + k)@@ +k+1)!
] ZH (i+m+1)

k
where the sum is over all (k + 1)-tuples (to, 1, ,t;) such that > t, = n —1r — 2k
m=0

n—2k

and t,, > 0. It is easy to see the sum is the coefficient of x in the power series

k

IT m This completes the proof. [ |
m=0
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Lemma 3.5 Letn >3 and S C [3,n]|. Then
(1) vpaln — k + 1,m]) = w(0;n — 1, k).
(2) Suppose S # 0 and VP,(S) # 0. Let r = max S. For any 0 < k <n—r—1, we have

vpp(SUn—k+1,n]) = Zw(k‘ — im0, ) Upp—m—i(SU[r+1,n —m —1i]),
i=0

where m=n—1r — k.

Proof. (1) Fix & > 0. By induction on n > k. For n = k, we have vpi([1,k]) = 0. It is

k
casy to see w(0;k — 1,k) = kl(k + 1)z [] 1= = 0. Hence, the identity holds
=0

1
ke (m+1)z
for n = k. Suppose the identity holds for all n < n. For n = n + 1, by Lemma 3.3 and
the induction hypothesis,

VPpi1([n —k+2,n+1])
= 2(k+ Dvp(In—k+1,n]) +k(k+1)vp,_a([n —k+1,n—1])
= 2(k+1w(0;n—1,k) + k(k+ 1)w(0;n —2,k —1)
= w(0;n, k).

Thus the identity holds for n =n + 1.
(2) Let us apply induction on m =n —r — k. For m = 1, we have n — k =r + 1. By
Lemma 3.3,

vpp(SUn—k+1,n])
= 2(k+1vp,1(SU[r+1,n—1])+k(k+ 1)vp,—2(SU[r+1,n—2])
= w(k;1,0)vpp_1(SU[r+1,n—1]) +wk —1;2,1)vp,—o(SU[r+ 1,n —2])
w(k —i;m + 14, 0)vpp—m_i(SU[r+1,n —m —i).
—0

2

Hence the identity holds for m = 1. Suppose the identity holds for m = m. For m =
m+1=n—r—k, by Lemma 3.3,

pp(SUn—k+1,n]) = 2(k+1vp,_1(SU[n—k,n—1))
+ k(k+ 1Dvp,—2(SU[n—k,n—2]).

By the induction hypothesis,

Upp_1(SU N —k,n—1]) = Zw(k‘ —iym 4+, 0)pp—1—m—i(SU[r+1,n—1—m —1i])
i=0
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and

UPp—2(SUn —k,n—2])

= Y wlk—1—ism+1i,8)vppomi(SU[r+1,n—2—m—i)
=0
m+1

= Zw(k—i;m—1+i,i—1)vpn_1_m_i(SU[r+1,n—1—m—i]).
=1

It is easy to see
2k + Dw(k —i;m—+4,0) + k(k+ Dwk—ism+i—1i—1)=wk —i;m+1+41,19)

for all i € [m],
2(k + Dw(k;m,0) = w(k;m+ 1,0)

and
E(k+ Dwk—m—1;2m,m) =wk —m—1;2(m+1),m+ 1).
m+1
Hence, vp,(SUn—k+1,n]) = > wk—i;m+1+14,i)vpp_1—m—i(SU[r+1,n—1—m—i]).
i=0

|
For any S C [3,n], recall that type(S) denotes the type of the set S.
Theorem 3.2 Let n > 3 and S C [3,n]. Suppose type(S) = (ri* k2 ... rhm) with

m > 2 and VP,(S) # 0. Letrg =0, A; = ri —ri_y — k; and B; = > k; for any
=i
1<i<m. Then

Am  Am—1 Ao m m
vpa(S) = 2y Ny [Hw(Bs = i As+ i i)
im=01py”—1=0 i9=0 [s=2 Jj=s
w(0; A+ B =Y i;—1,B —Zij)] .
j=2 J=2

Proof. By induction on m. For m = 2, by Lemma 3.5,

Az
upr,(S) = Z w(ky — dg; Ag + 2, 12) VP +h—in ([11 — k1 + 1,71 + k2 — da])
19=0
Az
= Zw(BQ — iQ;AQ + ig,ig)w(o; Al + Bl - ig - 1, Bl — Zg)

19=0

Suppose the identity holds for m = m. For m = m + 1, by Lemma 3.5,

Am+1
Uprerl (S> = Z w(km+1 - t? Am+1 _'_ t’ t)Ume‘f‘karl_t(St)’
t=0
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where type(S;) = (¥, 782 oo (1o + kg — t)FmtEm1=t)  For every 0 < t < Apytq, DOte

that A;; = A; and Bj; = B; —t for any 1 <4 < m. By the induction hypothesis,

m+1 A m m m
t=0 im=014,,,—1=0 i9=0 =2 7j=2

. w(km—i-l - t; Am—i—l + t> t) Hw(Bé,s - Zij; As + isa Zs)]
j=s

s=2
Am41 Am—1 Az [m+1 m+1
= Z Z Z Z[H'&U Z’ij;A5+is,i5)
tm+1=0 9 =0 i, —1=0 19=0 [ s=2 j=s
m+1 m+1
0 Al + Bl Z 1 — 1 Bl Z )]
j=2

Example 3.2 Let n = 8 and S = {3,7,8}. Then type(S) = (3%,8%), A =2, Ay = 3,
By =3 and By, = 2. By Theorem 3.2, we have

vps({3,7,8}) = w(2;3,0)w(0;4,3)+ w(1;4,1)w(0;3,2)
+w(0;5,2)w(0;2,1) + w(—1;6,3)w(0;1,0).

Note that

w(2;3,0) = 216, w(0;4,3) =0, w(1l;4,1) =456, w(0;3,2) =0,
w(0:5,2) = 144, w(0:2,1) =2, w(—1:6,3) =0, w(0;1,0) =

Thus vps({3,7,8}) = 288.

4 Appendix
For convenience to check identities given in the previous sections, by computer search, for

1 < n < 8, we obtain the number vp,(S) of permutations in the set V P,(S) # 0 and list
them in Table 2.
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n

1{S=0
1

210
2

300 {3}
4 2

410 {3} {4}
8 4 12

50 {3} {4} {5} 3,5} | {4,5}
16 8 24 56 4 12

6|0 {3} {4} {5} {6} 3,5} | {3,6} |{4,5} |{4.6}
32 16 48 112 240 8 24 24 72
{5,6}
144

7|0 {3} {4} {5} {6} {7} {3,5r [{3,6} [{3.7}
64 32 96 224 480 992 16 48 112
{45} {46} [{4,7v [{5.6} [{57F [{6,7} |[{3,5,7}|{3,6,7} |{4,5, 7}
48 144 336 288 688 1200 8 24 24
{4,6,7} | {5,6,7}
72 144

810 {3} {4} {5} {6} {7} {8} 3,5} | {3,6}
128 64 192 448 960 1984 4032 32 96
{3,7p [{3,8t {45} |{46} {47 |{48} |{56} [{57} |{58}
224 480 96 288 672 1440 576 1376 2976
{6,7y 16,8} |{7,8} |{3,5,7}|{3,5,8} | {3,6,7} |{3,6,8} | {3,7,8} | {4,5,7}
2400 5280 8640 16 48 48 144 288 48
{4,5,8} [ {4,6,7} | {4,6,8} | {4,7,8} | {5,6,7} | {5,6,8} | {5,7,8} | {6,7,8}
144 144 432 864 288 864 1728 2880

Table 2. vp,(S) for 1 < n < 8 with VP,(S) # 0.
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